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D3.3 – Experimental Evaluation of TO1 
 

Executive Summary 
This deliverable is part of a series of 3 deliverables – one per technical 
objectives (TO) [ECODE2007] – which aims at describing the experimental evaluation 
and results of the different use case functions. More specifically, this 
deliverable addresses the evaluation and experiments performed in the framework of 
TO1 related to i) adaptive sampling and ii) cooperative intrusion and 
attack/anomaly detection 
 
For each technical objective, the deliverable exposes the technical problems that 
need to be solved and outlines the techniques that have been developed. The 
proposed techniques have been introduced in the previous deliverable D3.2 titled 
“Design & Implementation of TO1”. A particular attention is given to the machine 
learning techniques designed and implemented for the different use cases; machine 
learning techniques are the heart of this deliverable (as well as of the whole 
project) as they are providing the necessary advantage for a better router design, 
and better network performances and manageability. After having described how the 
monitoring techniques are implemented for solving the different use cases, 
advanced performance evaluations are detailed. At this stage, evaluation of the 
concepts and their implementation are done by means of simulation and/or small 
scale experiments (emulation most of the time, but can be also experimented in 
real environments).  
 
This deliverable is organized as follows. Part 1 describes the use-cases main 
architectures and algorithms; part 2 describes the experimental facilities used 
towards the evaluation of the different use-cases. Finally, part 3 presents and 
discusses the evaluation results. 
 
 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 3.3                                                        Page 3 / 64 

Table of Contents 
 

Executive Summary............................................................... 2 
List of Authors................................................................. 4 
List of Figures................................................................. 4 
List of Tables.................................................................. 5 
1. Introduction ................................................................ 6 
2. Use case a1: Adaptive traffic sampling ...................................... 7 

2.1 System Architecture .................................................... 7 
2.2 Monitoring Engine (ME) ................................................. 7 
2.3 Machine Learning Engine (MLE) .......................................... 8 
2.4 Case Study: Traffic Accounting ......................................... 9 
2.5 Definitions ............................................................ 9 
2.6 Local flow size estimation ............................................ 10 
2.7 Combining measurements ................................................ 10 
2.8 Reconfiguring monitors ................................................ 11 

3. Use case a3: Cooperative traffic anomalies and attack detection ............ 12 
3.1 System Architecture ................................................... 12 
3.2 Information Distribution Component .................................... 14 

3.2.1 Incentive for selfish nodes ..................................... 16 
3.2.2 Reception processing ............................................ 16 
3.2.3 Query processing ................................................ 17 
3.2.4 Forwarding scheme ............................................... 18 

3.3 Joint Anomaly Detection and Classification ............................ 19 
3.4 Data Clustering for Anomaly Detection ................................. 20 
3.5 Sub-space Clustering and Multiple Clustering Combination............... 21 
3.6 Evidence Accumulation for Anomaly Detection ........................... 22 
3.7 Automatic Rules Generation ............................................ 24 

4. Experimental setup ......................................................... 26 
4.1 Use case a1: Adaptive traffic sampling ................................ 26 

4.1.1 Emulation platform .............................................. 26 
4.1.2 Validation scenarios ............................................ 27 

4.2 Use case a3: Cooperative traffic anomalies and attacks detection....... 29 
4.2.1 Cooperative distributed anomaly detection ....................... 29 
4.2.2 Joint anomaly detection and classification ...................... 30 

5. Experimental results ....................................................... 33 
5.1 Use case a1: Adaptive traffic sampling ................................ 33 

5.1.1 System efficiency, adaptability and convergence ................. 33 
5.1.2 Fairness and comparison with the local static method ............ 39 
5.1.3 Global sensitivity analysis ..................................... 42 

5.2 Use case a3: Cooperative traffic anomalies and attacks detection....... 45 
5.2.1 Cooperative distributed anomaly detection ....................... 45 
5.2.2 Joint anomaly detection and classification ...................... 47 

6. Update on Section 6 of D3.2: Recommendation for integration into common ECODE 
architecture................................................................... 57 

6.1 Use case a1: Adaptive traffic sampling ................................ 57 
6.1.1 CM Interface .................................................... 57 
6.1.2 TR Interface .................................................... 58 
6.1.3 PD+DT Interfaces ................................................ 59 

6.2 Use case a3: Cooperative traffic anomalies and attacks detection....... 59 
7. Conclusion ................................................................. 61 
References..................................................................... 63 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 3.3                                                        Page 4 / 64 

List of Authors 
Affiliation Author 
INRIA Amir Krifa 
INRIA Imed Lassoued 
INRIA Chadi Barakat 
LAAS/CNRS Philippe Owezarski 
LAAS/CNRS Pedro Casas 
LAAS/CNRS Johan Mazel 
LAAS/CNRS Yann Labit 
Univ of Lancaster Kavé Salamatian 
 
List of Figures  
Figure 1:  Architecture ........................................................ 7 
Figure 2:  Architecture ....................................................... 13 
Figure 3:  Evidence Accumulation for Unsupervised Anomaly Detection ........... 23 
Figure 4:  Geant Topology ..................................................... 28 
Figure 5:  Abilene Topology ................................................... 28 
Figure 6:  Distributed Network Attack in WIDE - Network SYN Scan. ............. 30 
Figure 7:  iLAB setup for implementation evaluation in real traffic from the WIDE 

project. A distributed network SYN scan is re-played. .............. 31 
Figure 8:  Distributed Network Attack in WIDE – TCP SYN DDoS. ................. 32 
Figure 9:  Mean relative error vs. time using Trace S ......................... 34 
Figure 10:  Mean relative error vs. time using Trace V ......................... 34 
Figure 11:  Resulting overhead vs. time using Trace S .......................... 35 
Figure 12:  Resulting overhead vs. time using Trace V .......................... 35 
Figure 13:  Evolution of some sampling rates vs. time using trace V and TOPG. .. 36 
Figure 14: Sampling rates of the different monitors at time instant 2023s. .... 37 
Figure 15:  Average mean relative error for different TO values. ............... 37 
Figure 16:  Resulting overhead vs. time using three different TO values. ....... 38 
Figure 17:  Average mean relative error vs. target overhead for the Abilene-like 

topology. .......................................................... 39 
Figure 18:  The evolution of the mean relative error of all the flows vs. time. 39 
Figure 19:  The mean relative error of flow measurements: Our global adaptive 

approach vs. local static one. ..................................... 41 
Figure 20: Overall MSE achieved in the single hop scenario for the temporal, the 

spatial and the spatio-temporal setting ............................ 45 
Figure 21:  MSE achieved after a number of iteration of the distributed 

compression scheme for a global rate of 1200 bits per sample} ...... 46 
Figure 22:  MSE as a function of neighbor rate achieved for a social and an 

asocial node ....................................................... 47 
Figure 23:  Anomaly detection based on absolute-deltoids change detection in WIDE, 

using destination IP address /24 as traffic aggregation. ........... 48 
Figure 24:  Multi-Dimensional Scaling for (a) Straditional and (b) SEAC. The presence 

of the anomalous cluster becomes evident in the SEAC similarity matrix.
................................................................... 49 

Figure 25:  Distribution of inter-pattern similarity in SEAC. ................... 50 
Figure 26:  Absolute and splitting rules for anomaly signature. ................ 51 
Figure 27:  Absolute and splitting rules for a TCP SYN DDoS attack. ............ 53 
Figure 28:  iLAB Topology for Experimentation. ................................. 54 
Figure 29:  iLAB Topology Generation via NS File. .............................. 55 
 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 3.3                                                        Page 5 / 64 

List of Tables 
 
Table 2: Comparing AS traffic volume estimations............................... 42 
Table 3: Frequencies........................................................... 44 
Table 4: Parameters of the experiment.......................................... 44 
Table 5: Set of Attributes for the Feature Space............................... 48 
Table 6: Set of Attributes for the Feature Space............................... 52 
Table 7: Execution time for a 20s sliding window and different platforms....... 55 

 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 3.3                                                        Page 6 / 64 

1. Introduction 
 
This deliverable focuses on Technical Objective 1 (TO1) and presents the results 
of experimentations for the two use cases of this deliverable a1 and a3. Before 
exposing the results, the deliverable describes the technical problems that need 
to be solved and recalls the methods that have been proposed to handle these 
problems. A particular attention is given to the machine learning techniques 
designed and implemented for the different use cases; machine learning techniques 
are the heart of this deliverable (as well as of the whole project) as they are 
providing the necessary advantage for a better router design, and better network 
performances and manageability. After having described how the monitoring 
techniques are implemented for solving the different use cases, advanced 
performance evaluations are detailed. At this stage, evaluation of the concepts 
and their implementation are done by means of simulation and/or small scale 
experiments (emulation most of the time, but can be also experiment in real 
environments).  
 
The deliverable is organized as follows. Part 1 describes the use-cases’ main 
architectures and algorithms; part 2 describes the experimental facilities used 
towards the evaluation of the methods proposed within the different use-cases. 
Finally, part 3 presents and discusses the validation results. 
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2. Use case a1: Adaptive traffic sampling 
 
2.1 System Architecture 
 
Figure 1 depicts the basic functional components of the proposed monitoring system 
and the interactions among them. This system relies on local NetFlow-like 
measurement tools (Monitoring Engine (ME)) deployed in network routers as well as 
on the reporting capabilities for exchanging information and decisions with the 
central unit (Cognitive Engine (CE)). The targeted application provides the input 
to the system in the form of a set of attributes, for example the set of IP prefix 
to track, to apply on the collected data at the central unit (Machine Learning 
Engine (MLE)). The system adjusts the sampling rates in routers to answer the 
application needs with the best accuracy and the lowest overhead. Next, we give a 
detailed description of the architecture components. 
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Figure 1: Architecture 

 
2.2 Monitoring Engine (ME) 
 
This engine comprise a set of monitoring points that run in each router and aims 
at sampling and capturing packets at the interfaces of the router. It then exports 
them in the form of NetFlow records to the central collector. As depicted in 
Figure 1 one can observe four main modules: 

• Packet capturing: this module listens to the network interface and samples 
data at a given sampling rate. This sampling rate is configured each time 
by the Machine Learning Engine (MLE) next to the optimization it carries 
out after correlating measurements from all routers. 

• Classifier: once a packet is sampled by the packet capturing module, the 
classifier identifies flows by a key (in our case this key corresponds to 
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the 5-tuple). The classifier then determines if a flow is active or if it 
is a new flow. If the flow is active, it updates real-time statistics on 
that flow such as the number of packets and bytes. If it is a newly 
observed flow, it inserts a new flow record for this new packet’s key. The 
ME maintains the keys of flows forwarded by the router to the collector 
together with the statistics on those flows. A flow is declared finished by 
the classifier in one of three cases: (i) when observing a FIN or an RST 
packet (TCP control), (ii) when a timeout expires after the record for that 
flow was created, and finally (iii) when the number of records exceeds a 
given threshold requiring to release memory. 

• Reporting: once collected, flow records are exported using UDP messages to 
the Machine Learning Engine via the CM (Cognitive-Monitoring) interface. 

• Controller: based on the collected data applies machine learning methods, 
the Machine Learning Engine takes a decision on how to tune the sampling 
rates and then sends it back to the ME in each router. The router 
controller receives the decision and updates its sampling rate accordingly. 

 
2.3 Machine Learning Engine (MLE) 
 
This component is motivated by the need to extend the local existing monitoring 
tools (MEs) with a network wide cognitive engine able to:  

• Investigate the measurements collected from the different routers (local 
views) and then construct a global view of the traffic and the network 
state. 

• Automate and enhance network-wide monitoring control while decreasing their 
resulting cost. The automation of the control of sampling rates is achieved 
by learning experiences from the accuracy of the collected data and the 
resulting overhead. 

 
The MLE is composed of two main modules:  

• Global Network Traffic Inference Engine: Given a measurement task T to 
realize, this inference engine investigates the local measurements made by 
the different routers to have a global and more reliable view. A typical 
task T would be the estimation of the volume of traffic between each pair 
of edge routers. The engine takes as inputs the sampling rate vector of 
network routers as well as the local estimations of MkkTT ..1)ˆ(, = , calculated 
from the reports sent to the collector by the different routers and stored 
in the Storage Engine. M is the number of router interfaces in the network. 
The inference engine then tries to combine the local estimators and to 
derive a better estimation of T. This combination is motivated by the need 
to minimize the variance of the global estimation error. For this purpose, 
we construct the global estimator of the task T as a weighted sum of the 
different local estimators. This weighted summation of local independent 
estimators is known to be the best linear combination in terms of mean 
square error [Duffield05]. Note that the summation is only done over 
monitors that have seen the traffic of interest. The weights are inversely 
proportional to the estimation error of the local estimators, which in 
their turn are inversely proportional to the configured sampling rate. 
Thus, local estimates with smaller error variance have a larger impact on 
the global estimator than those with larger errors.  

• Network Reconfiguration Engine: To dynamically reconfigure the network 
monitors and in order to give a solution that allows optimizing measurement 
accuracies while respecting the monitoring constraints, we resort to a 
dynamics inspired from the one used by TCP for the adjustment of its 
congestion window. Starting from an initial sampling rate Pinit for all 
interfaces, the Network Reconfiguration Engine is fed with the estimation 
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of task T and the variance of this estimation )ˆ(TVAR from the Inference 
Engine, as well as the resulting overhead from the Storage Engine, i.e. 
rate at which flow records arrive. If the resulting overhead is less than 
the TO (Target Overhead), the system keeps increasing the sampling rates of 
the different monitors. Once the TO is reached, the system triggers 
decrease the sampling rates of the least significant monitors. In this way 
the system strives to keep the reporting overhead at TO flow records per 
second and fully profits from the available resources while seeking the 
best estimation of measurement task T. To increase or to decrease sampling 
rates, we use increments in the logarithmic scale in order to give more 
flexibility to our system. Another advantage of using the logarithmic scale 
is that sampling rate adjustments depend on the value of the sampling rate 
itself: small adjustments when the sampling rate is low and large 
adjustments when the sampling rate is high. The least significant monitors 
are identified using the GPM as already described. From the perspective of 
the task T, the least significant monitors are the ones providing the least 
increase in the variance of the estimator of T, i.e. )ˆ(TVAR , when the 
logarithmic of its sampling rate is decreased. To be identified, one has 
first to write analytically the expression of )ˆ(TVAR  as a function of the 
sampling rates in routers of interest then calculate the utility function 
of the different monitors by differentiating this expression with respect 
to log (pk), where pk is the sampling rate of the monitor k: 

MkpTVarU kk ..1),log(/)ˆ( =∂∂= . Given the current configuration of 
sampling rates, we choose the least significant monitors as being those 
having utility function values less than the average of the utility 
function value over all the monitors. In the next section, we provide an 
example of this control using an accounting application. 

 
2.4 Case Study: Traffic Accounting 
 
We explain in this section using a concrete example how the machine learning 
engine, based on the collected measurements, can decide on the way to tune the 
sampling rates over the network. For this purpose, we consider an accounting 
application: the estimation of the volume of some chosen network flows. Given a 
set of flows to monitor, the machine learning engine should progressively tune the 
sampling rates in routers in such a way to minimize the global estimation error. 
 
2.5 Definitions 
 
Consider N traffic aggregate (set of attributes) flows whose volumes in packets 
are labeled NFFFF ,...,, 321 . Denote by NFFFF ˆ,...ˆ,ˆ,ˆ

321  the corresponding estimators. Let 
P = ( kp ) be the vector of sampling rates in the different monitors of the 
network. There are in total M monitors. The target of the system is to find the 
vector P that minimizes the sum of normalized estimation errors∑

i
ii FFVar 2/)ˆ( . 

Each aggregate flow iF  is formed of a set of 5-tuple (source IP, destination IP, 
source port, destination port, protocol) flows whose volumes are denoted by jiS . 
Again, denote by jiŜ  the best estimator for the size of each of these 5-tuple 
flows. One can then transform the optimization problem into minimizing the sum of 
the normalized estimation errors of the sizes of the 5-tuple 
flows∑∑

i j
iji FSVar 2/)ˆ( . 
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As long as there are available resources, the monitors’ reconfiguration engine 
periodically increases all sampling rates to improve results’ accuracies. Once the 
TO value is reached the system triggers a decrease in the sampling rate of the 
least significant monitors. This continues until the overhead is again below this 
TO value. The least significant monitors are the ones having the smallest absolute 
values for the following partial derivation sum: 
 

∑∑ ∗
∂
∂

j ik

ji

i Fp

SVar
2

1

)log(

)ˆ(
 

 
In the following, we show how such estimators for the 5-tuple flow sizes are 
formed and how the partial derivatives of their variances are obtained. For the 

iF  themselves, which are unknown, we simply substitute them by their estimations, 
i.e. ∑=

j
jii SF ˆ . Note that we consider the volumes of flows as measured in number 

of packets. The translation to bytes can be made by multiplying the size in 
packets by the average packet size, which we suppose true for large flows. 
 
2.6 Local flow size estimation 
 

Consider a 5-tuple flow jiS  crossing monitor k whose sampling rate is kp . Let 
kjis be the number of packets sampled from this 5-tuple flow in the monitor (this 

number could be zero). With this information, one can derive a first estimation 
for the flow size of the flow. The estimator that maximizes the likelihood is 
known to be [Duffield02]: 

k

kji
kji p

s
S =ˆ . Under independent sampling of packets with 

probability pk, the number of packets kjis  sampled from an original 5-tuple flow 
jiS  follows a binomial distribution whose variance is well known and equal 

to )1( kkji ppS −∗∗ . It follows that this local estimator for the size of a 5-tuple 
flow has a variance equal to kkjikji ppSSVar /)1()ˆ( −∗= . 
 
2.7 Combining measurements 
 
The information on a 5-tuple flow comes from all monitors along its path. Though, 
some of them may not sample any of the packets of the flow, either because their 
sampling rate is low, or because the volume of the 5-tuple flow is small in terms 
of packets. We propose to identify these monitors related to a 5-tuple flow with 
the help of routing information. Largely deployed link-state protocols like OSPF 
and IS-IS provide such information. If such routing information (the list of 
monitors on the path that should see the flow) is not available at the central 
unit, one has to limit the observations to monitors that have seen the flow taking 
into account that this might cause a bias against unsampled 5-tuple flows that 
got. However, this bias is expected to be small when aggregating over aggregate 
flows iF . 
 
We estimate the volume of a 5-tuple flow as being the sum of the weighted sum of 
the local estimators done in the monitors along its path. This gives the following 
global estimator for 5-tuple flow j belonging to aggregate flow iF , 
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∑∑
∈
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,/ˆ  

where jiϕ  is the set of monitors on the path followed by jiS . Replacing the 
variances by their expressions given in the previous section, substituting the 
second equation into the first one, and simplifying by jiS , we get,  
 

∑ ∑
∈ ∈ −

=
−

=∗=
ji jik l k

kji
l

l
jikjikji

ji
ji pp

p
sS

ϕ ϕ
βαβ

α 1

1
,

1
,

1ˆ  

 
Note in particular how the jiα  and the kjiβ  are the same for all 5-tuple flows that 
follow the same path, which eases a lot the calculation. As for the variance of 
this estimator of 5-tuple flow sizes, it is simply equal to

ji

ji
ji

S
SVar

α
=)ˆ( . The 

original flow size being unknown, we can simply substitute it by its global 
estimator jiŜ . 
 
2.8 Reconfiguring monitors 
 
As shown in the previous section, the variance (or mean square error) of 5-tuple 
flow size estimation is very important for the determination of the global system 
accuracy (note that we can increase the Target Overhead TO to satisfy a given 
threshold of measurements accuracy) and for the identification of the monitors 
that should be reconfigured. For 5-tuple flow jiS and monitor k we can write, 

22 )1(

*

)log(

)ˆ(

kji

kji

k

ji

p

pS

p

SVar

−
−

=
∂
∂

α
 

 
This represents the marginal gain in the accuracy (loss in the variance) when the 
logarithm of the sampling rate of monitor k is increased by a small step and this 
is from the perspective of estimating the size in packets of flow jiS . As 
expected, this gain is positive when someone increases the sampling rate kp  (more 
sampling means more accuracy). It also decreases when kp  increases, which suggest 
that the estimation error follows a continuously decreasing and convex function 
with the sampling rate, a condition required for the uniqueness of solution in 
non-linear optimization theory.  
 
By using the above expression we obtain the utility function of the monitor k, 
which sums the accuracy and normalizes it over all 5-tuple flows forming the 
traffic of interest. Thus, the total gain (resp. the loss) in accuracy when the 
sampling rate of monitor k is tuned up (resp. down) by a multiplicative step 
(additive in the logarithmic scale) is given by the following expression: 
  

∑∑ ∗
−

−

j ikji

kji

i Fp

pS
222

1

)1(

*

α
 

 
By testing all monitors, we can find the best sampling rates to tune down in case 
of saturation. We choose to decrease the monitors having utility function values 
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less than the average over the different monitors. Note that the sum can be 
calculated online as long as more reports are received. The parameters jiα  can be 
calculated only once for each configuration. These parameters will be used for all 
possible paths across the network. 
 

3. Use case a3: Cooperative traffic anomalies and attack 
detection 

 
The use case a3 consists of two approaches followed separately by LAAS and 
Lancaster University. On one hand, LAAS targets to develop a two-steps technique 
to tackle both the anomaly detection and the anomaly classification problems. The 
technique is based on a clustering technique adapted to traffic anomalies and 
attack detection. On the other hand, Lancaster University tries to develop a 
cooperative anomaly detection scheme that is based on information exchange between 
monitor nodes. In this section these two efforts will be described. 
 
3.1 System Architecture 
 
Figure 2 depicts the basic functional components of the proposed distributed 
monitoring system and the interactions among them. This system assumes that a 
local Monitoring Engine (ME) deployed in network routers or any other monitoring 
boxes are capturing regularly (at fix time intervals for example) some metrics 
(like NetFlow measurements, or traffic volume related metrics).  
 
We assume that metrics measured by the monitoring engine generates 
multidimensional (one dimension per metric measured) time series. We also assume 
that some of the network routers (or eventually all of them) have a MLE that will 
contain two components relative to our application:  

1. A distribution component that has the responsibility of forwarding needed 
metrics or eventually an approximation of them to nodes that have demanded 
the metrics. 

2. An anomaly detection component that will use information coming from the 
local ME as well as the information forwarded by other nodes by the 
forwarding task in order to detect anomalies occurring locally and 
eventually remotely. 

 
The anomaly detection task will run only in nodes that have a need to detect 
anomalies, i.e. we might consider cases where only a single central node (master 
node) do anomaly detection using information coming from other nodes as well as 
scenarios where several anomaly detectors are distributed in the network. However 
the distribution task should be present more frequently.  
 
We will consider the distribution task as a distributed application running in the 
MLE of participant routers that will run on a subset of routers (or eventually 
all). This application will sit in the MLE, as it will have to learn from all 
demands crossing that node which information (which projection of information) 
should be forwarded to other nodes. We are therefore considering a distribution 
overlay that consists of routers running the distribution task into their local 
MLE. These nodes are to be connected by an underlay consisting of normal routers.  
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 Figure 2: Architecture 
  
The anomaly detection and the distribution task are interacting through a client-
server relationship: the anomaly detector queries some remote metric of interest 
to the distribution component that will take care of retrieving this information 
for the anomaly detector and returning a flow containing the queried metrics at 
fixed time intervals. For this purpose the distribution component will launch 
queries to its neighbors’ in the overlay. A neighbor node combines the queries it 
receives and creates new queries that will accommodate the demand with its own 
constraints and forward them to next steps. In the forthcoming we will describe 
with more details these components. 
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3.2 Information Distribution Component  
 
The role of this component is to provide information from remote and local 
Monitoring engine to the local anomaly detector. This information might be 
directly observed and collected by the local Monitoring Engine (ME) or eventually 
received from remote distribution components. The remote information might be 
information coming from local ME at remote location, or information processed by 
an intermediate component (for example anomaly detection results obtained by 
another anomaly detection component on a remote router) at the remote location.  

 
Indeed, a node would like to obtain the best approximation of remote variables. 
However this comes at the cost of consuming network resources, as processor, 
bandwidth and power resources that could be used for other more important 
purposes. We assume that the nodes in the network are selfish, i.e. a node wants 
to get the best approximation of the state of other nodes while giving away the 
smallest amount of information about its own state. This selfishness can result 
from several reasons; for example generating state messages and sending them is 
consuming processor, bandwidth and power resources that could be used for other 
more important purposes, or the node is secretive and does not want to give more 
precision about its state than needed. This means that we need an 
incentive/punishment cooperative mechanism to deal with node selfishness and to 
drive nodes to use their resource to exchange information. 

 
We are assuming here that nodes are observing correlated information, as there 
will be no gain in sending non-correlated information to a remote point for 
anomaly detection. In other terms, exchanging information will not give any gain 
compared to detecting anomalies locally. For example two routers might observe 
locally the volume of traffic, the number of flows on each egress/ingress, the 
number of entries in the routing table, etc. These pieces of information are 
correlated as some part of the traffic crossing one router is crossing another 
one.  

 
We have described in deliverable D3.2 an exchange mechanism based on the 
distributed Karhunen-Loeve transform. The scheme assumes that we have a network 
(N, E) with M nodes. Each node i observes at time k a vector of metrics (called in 
the forthcoming the state vector) Xi[k] = X1

i[k],...,XL
i [k]( )T . All vectors are assumed 

to be column vectors. The estimated value of the state vector of node i at node j 
(the value received from the distribution component at node j about a queried 
metric at node i ) is written as ˆ X i, j [k]. For readability, we will frequently drop 
the time index for vectors. We assume that each vector, unless otherwise stated, 
is a multidimensional stochastic process with independent temporal samples.  

 
The main idea of the distribution approach developed in D3.2 is the following (we 
refer the reader to D3.2 for complete details) instead of transmitting the L 
values of the state vector Xi[k] at each time step, we transmit linear projection 
of itYi =CiXi +Vi, where Yi[k] = Y1

i[k],...,YK
i [k]( )T with K<L and V being a random error 

vector representing the truncation error (when we represent a projection value 
with a finite number of bits). When a node receives truncated linear projection, 
it can retrieve an estimate ˆ X i, j [k] of the initial state vectors Xi[k] using 
classical techniques from linear estimation theory (described fully in deliverable 
D3.2) as 

ˆ X = CT

X
∑ C CT

X
∑ +

V
∑ 

  
 
  

−1

Y (1) 
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where 
X
∑ are the covariance of the local state variable and 

V
∑ the covariance 

of the truncation noise. Moreover, we can give an expression for the resulting 
estimation error as  

D* = tr −
X
∑ CT

X
∑ C CT

X
∑ +

V
∑ 

  
 
  

−1

C
X
∑ 

  
 
   (2) 

 
Sending the linear projection in place of the value results in two outcomes:  

1- The amount of data sent per time step is reduced as we send K truncated 
values in place of the initial L values. By setting the dimension of the 
projection K and the number of bits used for representing each projection 
one can control the compression ratio. 

2- By sending the linear projection, we give a negotiation tool to the 
selfish node. If one sends directly the state vectorXi[k], the node will 
be left with an all or nothing choice; or all the available data is given 
or no data is given. With linear projection, the node can implement a 
full palette of cooperation scheme going from giving all the data to its 
counterpart to giving nothing and passing by intermediate points, where 
the node gives an approximation of its state. This last point is also of 
interest when the node has to mitigate concurrent transmission demands 
and to fit them into a given transmission constraint. 

 
We developed in document D3.2 a full method for determining the optimal projection 
matrix C i, and the dimension of the projection K. We also provide the number of 
bits used for representing each projection in order to fit into an overall 
transmission budget of K bits per time step while attaining a minimal mean 
squared error on the estimated states. The optimal projection depends indeed on 
the correlation between the states at the remote node with the states at the 
receiving node; if the correlation is high the amount of needed information to 
send is small and vice-versa.  
 
Nevertheless, the scheme presented in deliverable D3.2 was generic and worked for 
the case where all nodes where interested to know about the state of all other 
nodes. In the case of interest in ECODE project we wish to let the node to define 
what his states of interest are and to give to them a relative weight. We wish 
also this query to interact with intermediate node selfishness and make possible 
the node to mitigating between different queries he is receiving.   

 
In the forthcoming, we will describe how to achieve this query behavior. In the 
general situation, we are assuming that a node i has access to two types of data: 
its own state vector condensed in the vector Xi[k] and the projection sent by 
other nodes about their own state vectors represented as   Y

i . The node has to 
forward some information to its neighbors (in the real topology or in an overlay) 
validating a transmission rate constraint. The main issue is that if one does not 
take care, the length of   Y

i  increases and because of the rate constraints the 
precision about the state variables decreases, or equivalently the amount of noise 
introduced into the projection processing. We have therefore to develop a scheme 
to control the propagation of noise resulting from the joint effect of the 
increase in the amount of information to forward and the forwarding rate 
constraints. We will assume that each node i have a noise limit Dmax

i  that 
represents the amount of overall noise energy (coming from the sum of mean squared 
error of variables passing by this node) that the node can accept. A node will not 
be able to accept state variables that will drive its overall MSE beyondDmax

i .  
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We assume a node that wish to access to remote states generate a query in form of 
a list of state variables   L i  that it is interested in receiving with the highest precision possible. However, as it might not be possible to fit the query of all 
nodes with the bandwidth constraints, so the node along with its wish list 
provides a weight vector

  
W i L i( ). In summary, a node i stores 3 vectors: 

•  A vector of local states X i with realizations x i[k]. The vector 
    X contains all local states observed up to time k in the network.  

•  A vector of state preferences   L i  along with a weighting vector   
W i L i( ) 

describing the relative importance of the different state values in the 
list. A vector of estimated variance 

  
V L i( ) for the elements in the list 

is also maintained along with a value Dmax
i that represents the maximum 

variance the node can afford. 
• A vector of received projections   Y

i . We assume that the projection 
matrix   C i used for generating   Y

i
 as well as the characteristics of the 

quantization noises 
  
var V i{ },       Y i =C iX +V i  are known at node i. 

The node broadcasts periodically to his neighbors its list  L i , its associated 
weights

  
W i L i( ), along with the estimated variance of the members of this list 

  
V L i( ). Using this information, the neighbor can estimate the overall noise 
energy at node I as   

Di = W i L i( )T
V L i( ). Moreover, whenever the projection matrix 

  C i used for forwarding changes, its new value is forwarded to its neighbors as 
well as the new parameters of the associated noises 

  
var V i{ }. We assume moreover 

that a node has a bandwidth constraint R on the amount of information that it can 
forward. 
 
3.2.1 Incentive for selfish nodes 
 
In a well-behaved world, a node will forward to its neighbors linear projection 
that will help him estimating the needed set of state variables, ensuring that the 
overall variance will not go beyond Dmax

i . However, as said previously, the node 
might be selfish; so, they might be inclined toward forwarding less data than 
needed or even worst not forwarding anything. We have therefore to ensure there is 
a benefit for the nodes to cooperate with their neighbors by forwarding 
information helping them for inferring their needed information. In a nutshell, 
the solution consists in systematically sending to neighbor’s projections 
involving our estimates of the state variables in   L i  along with the variables in 
the neighbors list. At a neighbor node j, the MSE of the variables in   L j  depends 
therefore on the MSE of the estimate of variables in  L i ; nodes have an incentive 
to improve the estimation of their neighbors, as it will help to improve their own 
estimation. 
 
3.2.2 Reception processing 
 
A node i receive from its neighbors in information diffusion overlay the 
projections resulting from combining the neighbor’s state vectors and the 
projections received from the 2-hops neighbors. The received projections fill the 
vectors   Y i .  
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We have assumed also that the projection matrix used for generating the 
projections as well as the quantization noise variances are also known by node i. 
This knowledge results from exchange of control messages that are broadcasted to 
neighbors anytime there is change in these parameters.  
 
Upon reception of a message from its neighbors the node has to apply four types of 
processing to it: 

• Extracting node and state variable IDs used in the message and assigning 
each received value to the correct variable. This step essentially consists 
of parsing the received packet to find the bits relative to each specific 
variable. 

• Whenever a new projection or a new remote state variable is observed, the 
node has to update the vectors   Y

i  and the data structure it uses for 
storing the projection matrix   C i. The node has also to update its 
preference list iL . We will discuss this point further. 

• Estimating the covariance 
    X  
∑ of matrix     X that is needed for estimating 

the values of the states from the projections. This point will also be 
discussed further. 

• Knowing 
    X  
∑ , the estimation of remote state variables proceed following 

formula (1) and the error resulting from it can be estimated using formula 
(2) 

Estimation of the covariance of     X  can be done using the following approach. The 
element of this covariance matrix would fall in one of three cases: 

1. The covariance is between local state variable in node i: this covariance 
can easily be obtained at node i as all information are local.  

2. The covariance is between state variables in node i and remote node j: in 
this case let's define Y j = C jX j + V j the projection received from node j. 
Let's = E XiT Y j{ }X i Y j∑ , one can estimate 

X i X j∑  as: 

= C j

X i X j∑
^

X iY j∑                  (3) 

 where 
X i Y j∑ can be calculated as Xi and Y j are available at node i. 

3. The covariance is between state variables in remote nodes: in this case one 
can estimate j,k ≠

X k X j∑ i  as:  

= C j

X j X k∑ T
^

C k

Y jY k∑       (4) 
   

 
3.2.3 Query processing  
 
The way the preference list   L i is updated, i.e. the query is propagated depends 
on the particular application of the node state exchange. We will present here a 
generic updating mechanism. Let’s assume that at time k=0 the node i introduces in 
  L i  the IDs of the nodes and state variables it wishes to get and assign to them high weight. This query list is forwarded to neighbor nodes. After reception of 
its neighbor's preference list, node i updates its preference list by merging it 
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with the neighbor preference list; however, a lower weight is assigned to the new 
values. This inclusion is done as the variables needed by neighbors can be 
bartered later with the variables needed by node i. This new preference list is 
periodically forwarded to neighbor nodes. 
 
However, in order to ensure that the preference list is not lengthening without 
bound, we are using the maximum variance Dmax

i . We have to ensure that the 
weighted sum of the variance of elements in the preference list does not go beyond 
Dmax

i , i.e.   
Di = Wi L i( )T

V L i( )< Dmax
i . This means that increasing the length of 

the preference list is done at the cost of loosing acceptable precision on all 
variables in the preference list. A node might therefore prefer to exclude some 
elements from its preference list in place of degrading the overall quality of its 
needed variables. This would happen in particular if a particular variable is not 
anymore in the preference list of neighbors and if this variable is not of 
interest for the node itself. Another setting that leads in the retraction of a 
variable from the preference list is when a particular variable have a very high 
correlation (close to 1) with all its neighbors1. It is noteworthy that the weight 
of a particular variable in the preference list can be adjusted in order to 
improve its quality of estimation and to increase its bartering values.  
 
3.2.4 Forwarding scheme 
 
At time k=0 each node i has just its local state vector, the received projections 
vector   Y

i  is empty as well as the vector X. After reception of a preference list 
from neighbors where one of our local variables is included, the node first 
implements a local compression with the constraint rate R and forward an 
approximation of its own state vectors that are in the neighbors queries. The node 
send along with this transmission a node ID, the projection matrix resulting from 
the local Karhunen-Loeve Transform, and a vector containing the variance of 
quantization noise.  

 
With reception of preference list variables from the neighbors, the node will 
forward variables (or estimates of variables) from the preference list of 
neighbors weighted by their preference weights, as well as the estimate of some 
variables from its own preference list. The inclusion of the variables from its 
own preference list is to give an incentive to the neighbors to help the node i; 
if node i has a bad estimate of the variable in its preference list, it will 
introduce more noise in the projections sent to its neighbors. If we have not yet 
received any information about a variable in our preference list, we will send a 
zero value.  

 
The scheme will have in fact two major phases: a first phase of propagation of 
preference list and preference weights that terminates when the preference reaches 
a neighbor of the source maintaining the state variable of interest, followed by a 
second phase of propagation of the variable of interest that will follow the 
inverse diffusion path. 

 
After estimating the matrix 

    X  
∑ node i can implement the distributed compression 

scheme described in report D3.2 and derive the global projection matrix that 
integrates correlation between nodes and send only projections relevant to the 
variables in the preference list of neighbors. As the nodes will choose 
asynchronously their projection matrix, the node needs to recalculate its 
projection matrix every time it receives a new projection matrix from its 
neighbors. This recalculation of projection matrix implements the iterative 
                            
1 The correlation of variables is derived from matrix 

    X  
∑  
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algorithm suggested in the discrete Karhunen-Loeve Transform. This iterative 
algorithm is proven to converge to the optimal projection.  

 
After a transient period the preference lists become stable and no exchange is 
anymore needed. Moreover, the projection matrices converge to a stable point and 
there is not anymore the need for sending them. In Steady state, the node applies 
the converged projection to calculate the projected values to be exchanged with 
the neighbors. 

 
One of the main aims of the proposed scheme is to reduce the volume of information 
needed to spread the node state information. We achieve this by implementing 
relatively complex processing. However, the compression scheme needs to send 
parameters in addition to the projections. One has to evaluate the overhead 
resulting from the transmission of these parameters and to check if it is not 
killing the purpose. We will provide here an evaluation of this overhead.  

 
The overhead coming for the exchange of the preference lists is resulting from the 
hypothesis that the node has no topology knowledge. Any scheme that has to 
discover the topology will have such an overhead. This means that transmitting the 
projection matrices is the main overhead. However, as explained above the 
projection matrices converges to a stable point and they do not change afterward, 
meaning that the overhead resulting from this exchange become negligible with 
time.  

 
The above analysis is done assuming the state variables are stationary. However in 
a real network one can expect to observe changes in the distribution. Whenever 
such a change happens the projections have to be recalculated and the scheme 
returns back in the transient state. However, one can expect that the time between 
changes in the distribution is much larger than the transient time and the 
overhead effect stays negligible. 
 
In practical settings, we have observed that the overhead induced by exchanging 
the projection matrices is covered in the order of a minute by the reduction in 
the transmitted data, meaning that the use of the overhead is largely balanced 
with the benefit.  
 
Another point of interest is related to convergence in realistic settings. Indeed, 
the proposed iterative scheme is proved to converge to a steady state. However 
this proof is based on an assumption of perfect knowledge of the cross-correlation 
between the exchanged variables. However in practice we have not such a perfect 
knowledge and we have to resort to estimating the correlation. This ends up in 
some instability in the convergence. Nevertheless, by setting a threshold on the 
amount of variation in total noise energy between two iteration one can easily set 
a termination rule that his stable enough for realistic operation of the scheme.  
 
3.3 Joint Anomaly Detection and Classification  
 
In deliverable D3.2 we presented NewNADA, a two-steps algorithm to tackle both the 
anomaly detection and the anomaly classification problems, providing a flexible 
framework for network operators to understand and manipulate the anomaly treatment 
process.  
 
The first step of the algorithm consists in anomaly detection and information 
retrieval based on absolute deltoids [Cormode 2005] of volume traffic metrics and 
minimum sets search. The second step consists in anomaly classification based on 
traffic attributes signatures and filtering rules [Fernandes 2009]. 
 
The classification of anomalies requires labeled data of already known anomalies 
to produce very specialized signatures for low misclassification. However, this 
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approach is not appropriate to detect 0-day anomalies, for which we cannot have 
labeled data by definition. 
 
As we explained in deliverable D3.2, we have integrated a new machine learning 
module into NewNADA to detect unknown anomalies and to automatically produce new 
filtering rules for these 0-day anomalies. Additionally, the module can be used to 
update already known signatures, producing soft instead of static signatures. This 
module is based on unsupervised learning techniques, more precisely, based on 
clustering techniques and clusters assessment.  
 
The algorithm that we present takes as input a set of unlabelled traffic data and 
attempts to find unknown anomalies buried within the data. The proposed method 
does not assume any anomaly signature or particular model for anomaly-free 
traffic, which allows for detection of previously unseen attacks. After an anomaly 
is detected, we tackle the problem as a classification supervised learning problem 
(i.e. labeled data), selecting the best traffic attributes to automatically 
produce filtering rules (i.e. signatures). 
 
Our algorithm makes three assumptions about network traffic: (i) The majority of 
the network traffic corresponds to normal-operation traffic [Portnoy01], (ii) the 
attack traffic is statistically different from normal-operation traffic 
[Denning87], and (iii) it is possible to find a traffic aggregation in which 
anomalous traffic lies in small-size clusters. Instead of detecting anomalies 
based on outliers detection [Eskin02, Leung05], we will find anomalies based on 
small-size clusters detection. This is extremely important to accurately define 
robust filtering rules. In simple words, it is impossible to define a robust 
anomaly signature based only on outliers, which are by definition isolated 
instances. If any of these three assumptions fail, the performance of the 
algorithm will deteriorate. 
 
3.4 Data Clustering for Anomaly Detection 
 
Data clustering represents a very challenging problem. The objective of clustering 
is to partition a set of unlabelled objects into homogeneous groups or “clusters” 
with similar characteristics. The notion of cluster is generally defined in terms 
of dense regions: clusters are dense regions in the data space that are separated 
by regions of lower density. 
 
While hundreds of clustering algorithms exist [Jain99, Jain10, Duda01, Kaufman90, 
Everitt93, Theodoridis99], it is extremely difficult to find a single clustering 
algorithm that can handle all types of cluster shapes and sizes, or even decide 
which algorithm would be the best one for a particular data set [Dubes76, 
Fraley98]. Different clustering algorithms produce different partitions of data, 
and even the same clustering algorithm produces different results with different 
initializations and/or different algorithm parameters. This is in fact one of the 
major drawbacks in current cluster analysis techniques: the lack of robustness. 
 
To circumvent the limitations of current clustering techniques, we integrate in 
our algorithm a multiple clustering combination approach, via the notion of 
“clustering ensemble” [Strehl02]. A clustering ensemble consists in a set of 
multiple partitions produced for the same data. The idea is to combine the 
multiple partitions or clustering’s into a single data partition, obtaining better 
quality and more robust clustering results. Each partition of the clustering 
ensemble provides an independent evidence of data organization, which can be 
exploited to find a proper separation between normal traffic and anomalies. 
 
There are many different ways of generating a clustering ensemble. For example, 
multiple data partitions can be generated by using different clustering 
algorithms, or by applying the same clustering algorithm with different values of 
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parameters and/or initializations. There are also many different ways of combining 
the information provided by the different partitions. It is interesting to see 
that the clustering ensemble approach can take advantage of the lack of robustness 
of a certain algorithm to produce better results. 
 
In our particular problem of unsupervised anomaly detection, we generate multiple 
partitions by changing the feature space used to represent the data, applying the 
same clustering algorithm on each of the modified spaces. Remember that the 
feature space is simply the space generated by the different traffic attributes 
used to describe the traffic. Our algorithm falls within a more general field of 
clustering, known as Sub-Space Clustering [Parsons04]. 
 
As we discussed in D3.2, any modification that we shall make to the feature space 
must keep “human interpretable” and tractable attributes, easing the traffic 
analysis instead of obscuring it. For this reason, the modification of the feature 
space simply consists in constructing sub-subspaces of the original space, 
considering combinations of k features from the d features that compose the 
complete feature space. The number of features k < d represents the dimension of 
each feature sub-space, and it basically permits to dig the feature space for 
unknown anomalies with different depths. 
 
This sub-space clustering approach has an extremely beneficial side-effect: by 
taking small values of k, the clustering is performed in low-dimensionality 
spaces, reducing computational cost and getting around the “curse of 
dimensionality” problem. When the data is high-dimensional, the feature space is 
usually sparse, making it difficult to distinguish high density regions from low 
density regions. Briefly, sub-space clustering algorithms overcome this limitation 
by finding clusters embedded in low-dimensional subspaces. 
 
3.5 Sub-space Clustering and Multiple Clustering Combination 
 
Without loss of generality, let X = {x1, x2,…, xn} be the representation of the n 
traffic objects or patterns Y = {y1, y2,…, yn} found in the detected anomalous slot 
(detected by NewNADA). We use the generic term pattern because its nature will 
depend on the level of aggregation used in NewNADA. For example, yi can represent 
all the IP packets with a particular IP network destination address IPdsti, or all 
the packets with the same origin IP address. Each vector xi ϵ Rd is a d-
dimensional vector of attributes that describe yi, taken from the list of 
attributes previously described in D3.2. These d attributes define the feature 
space previously mentioned. 
 
Any general clustering algorithm takes X as input and organizes the n patterns 
into j different clusters, forming a data partition P. In multiple clustering 
combinations, we generate N different partitions of the same n patterns, building 
a cluster ensemble P = {P1, P2,…, PN}. Producing a clustering ensemble leads to an 
exploration of distinct views of inter-pattern relationships. From a computational 
perspective, multiple partitions produced in an independent way facilitate 
efficient data analysis. 
 
In our algorithm, the N partitions are generated by applying a particular 
clustering algorithm to each of the sub-spaces Xi c X that result from the 
combinations of k attributes taken from the d original attributes.  
 
Each partition Pi is obtained by applying DBSCAN [Ester96] to the sub-space Xi. 
DBSCAN is a powerful density-based clustering algorithm, which permits to 
accurately discover clusters of arbitrary shapes [Jain10]. In this context, N is 
simply the number of k-combinations obtained from d:  
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Each vector xj ϵ Xi is now a k-dimensional vector of attributes that describe yj, 
which provides a clear advantage from the clustering side: as we will generally 
consider small values of k, i.e. k << d, we shall be working with low-dimensional 
data. Density-based clustering algorithms such as DBSCAN provide better results in 
this case [Agrawal98]. However, this poses a clear trade-off between data 
dimensionality d, sub-spaces dimension k, and computational cost. The bigger the 
value of d and the lower the value of k, the bigger the cluster ensemble P 
becomes. This trade-off may render the problem computationally infeasible, but for 
the values of d and k that we are working on, this is not really an issue. For 
example, if we consider the complete list of attributes defined in D3.2, we have 
an initial dimension d = 20. To set the value of k, we take into account a very 
useful property of monotonic in clustering sets, known as the downward closure 
property: “if a collection of points is a cluster in a k-dimensional space, then 
it is also part of a cluster in any (k-1) projections of this space” [Agrawal98]. 
This directly implies that, if there exists any evidence of density in the data Y, 
we are sure that this evidence will be present in low-dimensional spaces. For this 
reason, we have decided to use a small value of k, usually k = 2. For d = 20 and k 
= 2, the number of partitions N is equal to 190, i.e., a reasonably small cluster 
ensemble P. In addition, doing clustering in low-dimensional data is more 
efficient and less time-consuming than clustering in bigger dimensions, which 
partially reduces the increased cost of multiple clustering. Even more, the 
computation of multiple partitions can be done in parallel, which certainly 
speeds-up analysis. 
 
3.6 Evidence Accumulation for Anomaly Detection 
 
In [Fred02, Fred05], authors introduced the concept of Evidence Accumulation 
Clustering (EAC). EAC is a multiple clustering combination algorithm that combines 
the clustering results of the multiple partitions Pi into a new single partition 
P*, using each clustering result as an independent evidence of data organization. 
EAC summarizes the inter-pattern structure perceived from the multiple partitions 
in P into a new similarity measure between patterns. In this sense, we expect that 
the new data partition P* will better explain natural groupings of the patterns, 
compared to the individual clustering results. 
 
Given n patterns Y = {y1, y2,…, yn}, the EAC algorithm follows a split-combine-
merge approach to discover the underlying structure: 

• Split: in this step, the d-dimensional representation of Y, namely X, is 
independently split in N consecutive clustering runs, building the N 
partitions Pi that compose P. In [Fred02, Fred05], authors use the K-means 
algorithm to perform this decomposition, producing the N partitions of X by 
random initializations and selecting randomly the number of clusters K to 
produce in each clustering run. As we explained before, in our algorithm we 
apply DBSCAN to the N different feature sub-spaces Xi. The reader should 
note that in our case, we make no assumptions on the number of clusters K 
in each data partition Pi, which represents an important advantage with 
respect to [Fred02, Fred05]. 

• Combine: in order to cope with partitions containing different numbers of 
clusters, we use a voting mechanism to combine the clustering results, 
leading to a new measure of similarity between patterns. The underlying 
assumption is that patterns belonging to a “natural” cluster are very 
likely to be co-located in the same cluster in different partitions. Taking 
the co-occurrences of pairs of patterns in the same cluster as votes for 
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their association, the N partitions are mapped into a (n∗n) co-association 
matrix C: 

    
  where nij is the number of times the pattern pair (yi, yj) is assigned to 

the same cluster through the N partitions Pi. The evidence accumulation 
mechanism thus maps the partitions in the clustering ensemble P into a new 
similarity measure between patterns (summarized in the co-association 
matrix C), intrinsically performing a non-linear transformation of the 
original feature space X into a new representation. 

 
This voting mechanism for evidence accumulation can be improved for our 
particular task of unsupervised anomaly detection. In fact, according to 
our assumptions, traffic anomalies lie in small-size clusters. In this 
sense, it would be beneficial to assign a different weight to the vote that 
a pattern pair (yi, yj) receives, taking into account not only the 
membership to the same cluster, but also the size of the cluster where both 
patterns lie together. 
 
Given a certain partition Pi formed by k=1,…,K clusters, and assuming that 
n(k) is the number of patterns inside cluster Ck, we define the evidence 
importance function wk(n(k)) as a weighting function that takes bigger 
values for small values of n(k), and tends to zero for large values of 
n(k). Using this function, we modify the voting mechanism described before, 
multiplying the assigned vote by wk when two patterns are found in the same 
cluster Ck of size n(k). We shall use the following pseudo-code of the 
evidence accumulation voting mechanism to better explain this simple idea: 

 

  
Figure 3: Evidence Accumulation for Unsupervised Anomaly Detection 

 
The parameter nmin simply specifies the minimum number of patterns that can 
be classified as a cluster by the DBSCAN algorithm. The evidence weighting 
factor permits to set the slope of wk, but for us it will be a fixed 
parameter. 
 
After going through the complete clustering ensemble, the final task of the 
Combine step consists in transforming the co-association matrix C into a 
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similarity matrix S, introducing an idea of proximity between patterns. 
Noting that each element in C lies in the interval [0,1], the similarity 
matrix S is simply the complement of C: 

 

  
• Merge: the core of the EAC technique is the mapping of partitions into the 

similarity matrix S. We can now apply any clustering algorithm over this 
new similarity matrix in order to find a consistent data partition P*. In 
[Fred02, Fred05], authors apply a minimum spanning tree (MST) algorithm, 
cutting weak links at a pruning threshold tprun. This is equivalent to 
cutting the dendrogram produced by the hierarchical single-link (SL) 
clustering method over the similarity matrix S at threshold tprun. 

 
A well known difficulty of the SL method is its quadratic space and time 
complexities, related to the processing of a (n∗n) similarity matrix. To 
circumvent this, we use the similarity information provided in S, coupled 
with the idea of what we are looking for: a small cluster. As we have 
assumed, if there is an anomaly present in Y, it must be represented by a 
small-size cluster with a well defined structure. If this is not the case, 
we claim that it is always possible to find a traffic aggregation with 
NewNADA in which this is true. 

 
Thus, the detection of an anomaly consists in finding a small and compact 
cluster, and this can be achieved by looking into S for those pattern pairs 
(yi, yj) that have the smallest dissimilarity. In other words, we look for 
those pattern pairs with the lowest values in S. 

 
3.7 Automatic Rules Generation 
 
Selecting the best attributes for sub-space clustering is a difficult task. Many 
papers in the literature attempt to do so by using different search heuristics 
[Liu98] (greedy forward and greedy backward, pruning, bottom-up, iterative top-
down, etc), additionally using some measure of goodness of clustering to assess 
the relevance of a particular feature. In this sense, they generally adapt the 
feature selection problem [Liu98], usually directed to the field of supervised 
learning, to the case of unsupervised clustering. 
 
In our case, we do not intend to perform attributes selection for the sub-space 
clustering step, but for automatically generating filtering rules that permit to 
clearly identify the anomalous cluster detected by EAC. The basic idea is to 
produce robust filtering rules that can be further integrated into a signature-
based detection system, so as to detect in the future the new anomalies detected 
by our unsupervised approach. 
 
We follow a similar approach to those proposed in the literature of feature 
selection, using the already generated clustering ensemble P. Basically, we select 
those partitions Pi in which the anomalous cluster is clearly isolated from the 
rest of the traffic patterns. 
 
We shall define two different types of filtering rules: absolute rules and 
splitting rules. Absolute rules do not depend on the relative separation between 
clusters. This kind of rules corresponds to the presence of dominant attributes in 
the patterns of the anomalous cluster. For example, if one of the attributes in X 
corresponds to the strong presence of SYN packets in a certain traffic aggregation 
specified for Y (e.g., 90% of the packets are SYN packets), it is likely that in 
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the detection of a SYN port scan attack, the majority of the patterns in the 
anomalous cluster will have a value equal to 1 for this attribute. Absolute rules 
are then rules of the type <attribute == value>. 
 
On the other hand, splitting rules consist in isolation rules that depend on the 
relative separation between clusters. Briefly speaking, if the anomalous cluster 
is well separated from the rest of the clusters in a certain partition Pi, then 
the attributes of the corresponding sub-space Xi are good candidates for defining 
a filtering rule. Splitting rules are rules of the type <attribute > threshold> or 
<attribute < threshold>. 
 
Absolute rules are important rules, because they define inherent characteristics 
of the anomaly. As regards splitting rules, it is clear that some of them will be 
more important than others, based on the degree of separation between clusters. In 
order to assess the importance of splitting rules, we use the notions of Linear 
Discriminant Analysis (LDA), through the computation of the Fisher Score. Given 
two clusters C1 and C2, where C1 corresponds to the anomalous cluster and C2 to the 
closest cluster in a particular dimension defined by attribute i, the Fisher score 
F(i) can be computed as follows: 

  
where xk(i) is the value of attribute i for the patterns that belong to cluster 
Ck, and n(k) is the size of the cluster. 
 
The Fisher score is a measure of the separation between clusters, relative to the 
total variance within each cluster. A big value of F(i) means that both clusters 
are well separated in the direction of attribute i. Therefore, in order to select 
the most important splitting rules, we shall keep those features with largest 
Fisher score. 
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4. Experimental setup 
 
4.1 Use case a1: Adaptive traffic sampling 
 
We choose to validate our architecture over a real platform that we developed for 
the purpose of the study. This platform detailed in [Krifa10] and briefly 
described in the following paragraph, has the following main features: (i) it is 
fed by real traffic captured on a transit link then spread and played over an 
emulated network topology, (ii) it includes real NetFlow-like tool for traffic 
monitoring on all router interfaces of the emulated topology, and (iii) it 
implements the machine learning engine as it should be operating in real-life 
setting.  
 
In addition, to validate the efficiency of the algorithms, we are particularly 
concerned by their feasibility and their practical deployment. During the 
performance evaluation study, we focus on the evaluation of the accuracy of 
traffic estimation for the accounting application and on the convergence of the 
monitoring configuration under an overhead constraint.  

 
4.1.1 Emulation platform 
 
Our validation platform, described in detail in [Krifa10], is composed of three 
services: (i) the traffic emulation service, (ii) the traffic monitoring and 
sampling service, and (iii) the data collection and analysis service. It is meant 
at emulating traffic sampling and monitoring functionalities in a backbone 
network. Routers can be virtual nodes connected by virtual links, but they can 
also be real routers connected by real links over which the monitoring platform 
runs. The first service of the architecture is responsible of generating the 
emulated traffic across the network routers. The second service implements on each 
router interface packet sampling and flow monitoring. This latter functionality is 
provided by SoftFlowd [Softflowd], open source free software capable of NetFlow 
measurements in high speed networks. The third service implements the MLE mainly 
consists of the Flowd tool in the SoftFlowd package. It is a centralized service 
that collects NetFlow records, correlates them to better estimate network traffic, 
and then runs our adaptive algorithm to decide on which sampling rates to update. 
SoftFlowd runs on each router interface and requires network traffic in the 
TcpDump format. Unfortunately, obtaining real traffic data from an entire backbone 
network is a hard issue, if not impossible. This has the other problem of being 
limited to one specific topology. 
 
To go around this problem, we proceed in the following way. We first seek for 
unsampled packet level traces collected on high speed transit links. Many of such 
traces exist; we consider for this study the ones coming from the Japanese WIDE 
project [Mawi]. Each trace is assumed to be one instance of the entire emulated 
network traffic. We parse the trace for the IP prefixes, and we dispatch them over 
the Autonomous Systems (ASes) connected to the edge routers of the emulated 
topology. The dispatching is done randomly according to some predefined weights 
that determine the importance of each stub AS. 
 
Furthermore, the dispatching preserves the IP prefixes in the traffic: two IP 
addresses belonging to the same prefix are assigned to the same AS. We leave it to 
the user to define the length of the prefix as a function of the granularity of 
the dispatching he wants to achieve.  
 
This can range from all in one AS (/0) to one IP address per AS (/32) passing by 
prefixes of length /16 and /24. For this work, we consider the /16 prefix as the 
basic unit for IP address assignment to ASes since we believe it is a good 
representation of how the IP address space is allocated in the Internet. Any other 
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allocation, mainly finer grained, should lead to a traffic distribution between 
ASes close to what we obtain with the /16 prefix, which should result in close 
performances and should provide the same insights on the cognitive control we 
present in this paper. 
 
Once addresses are allocated, the packets in the TcpDump trace are split 
accordingly between the different ASes connected to the emulated topology. 
Shortest routes are calculated for this latter topology. Then packets in the main 
TcpDump trace are associated to the different monitors over their respective paths 
across the network with the correct timestamps derived from the main trace. In 
this way, packets per monitor can be grouped into a new sub TcpDump trace and fed 
into SoftFlowd, can now sample the packets in that monitor, form the flows and 
send them back to the central collector. 
 
This sampling and monitoring is done in parallel on all network router interfaces. 
The different parameters of the architecture are set via an XML configuration 
file. The most important parameters are the topology of the studied network, the 
prefix length for IP address assignment and the weights of the ASes for the 
dispatching of packets. Note that different main TcpDump traces can be considered 
for the experimentation. In general, the larger the trace, the better the 
repartition of the emulated traffic over the network and the more meaningful the 
results are. 
 
4.1.2  Validation scenarios 
 
Our platform requires the definition of a network topology over which it 
dispatches and replays real traffic. This topology is supposed to connect an AS at 
each of its POP (Point-Of-Presence) routers. We chose to experiment over network 
topologies similar to the one of well known tier-1 transit networks. Two 
topologies, described in the following Figures (Figure 4 and Figure 5) were chosen 
for their widely use, the Geant topology (TOPG) [Geant] and the Abilene one (TOPA) 
[Abilene]. The weights of ASes needed for traffic dispatching set according to the 
sizes of stub ASes in Geant and Abilene and we make sure these weights sum to 1. 
An AS of weight w will then see itself attributed 100*w% of the prefixes available 
in the trace and will see its traffic (ingoing or outgoing) being around 100*w% of 
the total trace traffic, both at the flow and packet levels (random prefix 
allocation). 
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Figure 4: Geant Topology 

 
 

 
Figure 5: Abilene Topology 

 
Once topology and weights are set, we replay over each emulated topology different 
traces collected at a transpacific link by the Japanese MAWI working group [Mawi]. 
Traffic traces are made by TcpDump, and then, IP ad-dresses in the traces are 
scrambled by a modified version of Tcpdpriv [Tcpdpriv]. The default scrambling 
configuration preserves network prefixes and IP address classes. 
 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 3.3                                                        Page 29 / 64 

Later, we present results for two traces among the many ones in this data archive: 
Trace S collected on 03/03/2006 during the night making the traffic relatively 
smooth, and Trace V collected on 03/03/2006 during the day featuring more 
important traffic variability.  
 
Each of the three services of the platform runs on a separate computer. Computers 
are fast enough to follow in real time the stream of packets in the replayed 
TcpDump traces. There is one computer for dispatching and replaying traffic, a 
second computer for topology emulation and flow monitoring, and a third computer 
for measurement collection. The third computer emulates the central unit; it 
collects NetFlow reports and implements the sampling rate adaptation algorithm. 
 
As target application, we consider the estimation of flow sizes. We recall that a 
flow Fi is the set of 5-tuple flows that share the same AS source and AS 
destination. All AS-to-AS flows are jointly considered, which is often called in 
the literature the traffic matrix. The objective is to minimize the sum of 
normalized mean square errors for these flows. Initially, we set the sampling 
rates of the different monitors at Pinit and we set the maximum time interval 
between two measurements at t. Records are received by the collector and stored in 
a buffer of size C chosen in such a way that C = TO∗∗∗∗t records. This means at the 
equilibrium when the TO is reached, the collector will receive C flow records 
every time t. At every update of sampling rates, the buffer C is emptied and 
records are stored on a hard disk for later analysis. Practically, a new 
measurement and sampling rate update is triggered in the following two cases: 

• Timer t expires and the buffer C is still not full. In this case, the 
reporting overhead is less than the TO. The MLE increases different 
sampling rates and the timer t is rescheduled.  

• Buffer C overflows before timer t expire. In this case the reporting 
overhead O is larger than the TO. The CE decreases the sampling rates of 
the least significant monitors without waiting for the timer t to expire. A 
least significant monitor is a one causing a marginal loss in accuracy less 
than the average loss over all monitors. The timer t is then rescheduled. 

 
To reconfigure the monitors and get a fast scan of the interval [0, 1], we use 
increments in the logarithmic scale. For reconfiguring the sampling rate of e.g. 
monitor k, we set log(pk) to log(pk) ± c. This gives in the normal scale 

1)( −+= γkk pp  where γ  = exp(c). In our experiments, we measure the reporting 

overhead O and we set the value of γ   to min{1+
TO

OTO −∗σ ,3}, so that this value 
varies between 1 and 3. The reporting overhead is the number of flow records 
received since the last update, divided by the time since this last update. It is 
immediately noticed that the value of γ  depends on the reporting overhead. σ  is 
a constant parameter of the control that represents a balance between convergence 
speed and stability. Thus, using a small value of σ  gives small multiplicative factors γ  allowing the system converging smoothly while large value of σ  gives 
large values of γ  so that the system will converge rapidly.  
 
4.2 Use case a3: Cooperative traffic anomalies and attacks detection 
 
4.2.1 Cooperative distributed anomaly detection 
 
Our validation architecture consists of a diffusion overlay over a real network. 
For our purpose we will be using the Abilene Network architecture (shown in Figure 
4) as the main architecture and emulate an information exchange between 11 nodes 
connected by an overlay with 41 links. The diameter of this topology is 5 and the 
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topology is well interconnected with at least two different paths between each two 
nodes. We set arbitrarily the weight of initial node states added to the 
preference list at time k=0 equal to 10. Weight of node states asked by neighbors 
are set equal to 2, i.e. we give 5 time more weight to our own wish list compared 
to neighbors wishes. We assume that all nodes have the same transmission rate 
constraint on each one of the links attached to them. 
 
4.2.2 Joint anomaly detection and classification  

 
We shall evaluate the ability of the Unsupervised Anomaly Detection algorithm to 
detect and to automatically generate a signature for a distributed network attack 
in real traffic data from the Japanese MAWI traffic repository [Wide00]. This 
real-traffic dataset comes from the WIDE Internet operational network, a test-bed 
network developed under the WIDE project (http://www.wide.ad.jp/). The WIDE 
network provides interconnection between different research institutions in Japan, 
as well as connection to different commercial IPSs and universities in the U.S.  
 
The MAWI traffic repository consists of 15-minutes-long raw packet traces 
collected daily at 14:00 (Japan time) since 1999. These traces are provided 
publicly after being anonymized and stripped of payload data. 
 
The trace we shall work with consists in traffic captured in January 2004 at one 
of the trans-pacific links between Japan and the U.S., measured at sample point-B. 
The line is a 100-Mbps link with 18-Mbps CAR (Committed Access Rate). 
 

  
Figure 6: Distributed Network Attack in WIDE - Network SYN Scan. 

 
In the first scenario, we analyze a distributed network SYN scan attack directed 
to many victim hosts under IP network address 162.225.0.0/16, originated at an 
attacker host with origin IP address 204.243.26.29. The attack starts at time 
14:06:43 and it is directed towards multiple hosts and destination ports. Figure 6 
depicts this situation. 
 
Traffic is aggregated on a destination /24 network basis, using packet destination 
IP address and bitmask 255.255.255.0. The sliding-window time-scale granularity 
used by NewNADA to compute absolute-deltoids is 20 seconds. Absolute-deltoids are 
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computed for three different volume metrics, namely number of packets (# pkts), 
number of bytes (# bytes), and number of SYN packets (# SYN) [Fernandes 2009]. 
 
The attack that we analyze consists in a distributed network SYN scan directed to 
many victim hosts under IP network address 162.225.0.0/16, originated at an 
attacker host with origin IP address 204.243.26.29. The attack starts at time 
14:06:43 and it is directed towards multiple hosts and destination ports. Figure 6 
depicts this situation. 
 
The performance analysis of the unsupervised anomaly detection method is done in 
two different frameworks: prototype evaluation in Matlab, and implementation 
evaluation in iLAB. In the case of prototype evaluation, we shall analyze the MAWI 
real traffic trace in an off-line fashion, but using a temporal sliding-window to 
analyze traffic in consecutive temporal bins. In the case of implementation 
evaluation, we shall replay the real traffic from the MAWI trace and perform the 
analysis in an on-line basis. 
 
The implementation setup in iLAB is composed of several sources (at least two), a 
monitoring host and a gateway that will announce itself as the next hop for all 
the outgoing traffic of the monitoring host. Figure 7 depicts the proposed setup. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: iLAB setup for implementation evaluation in real traffic from the WIDE project. A 
distributed network SYN scan is re-played. 

 
We shall reproduce the network SYN scan by replaying the traffic traces from MAWI. 
We replay a trace of normal traffic in every source host, so as to simulate 
background traffic. In order to simulate the attack, here a network scan, we 
replay a trace composed of only traffic packets from a real network scan, 
extracted from the MAWI trace. This trace will be replayed from only one of the 
traffic sources. We extract the real anomaly from the MAWI trace in two steps: 
firstly, we filter the original trace containing the anomaly, keeping only the 
anomalous packets; secondly, we re-forge the trace in terms of IP addresses and 
time-stamps so as to fit to our scenario. 
 
The scenario will then simply consist of replaying a normal trace to create 
background traffic through the monitoring host and the gateway. We then launch the 
attack by replaying the anomalous trace. Our system running on the monitoring host 
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will then detect the unknown anomaly and characterize it, automatically producing 
a signature for the a-priori unknown anomaly. 
 
We expect that the detection results provided by the iLAB experimentation will be 
exactly the same as those provided by the prototype evaluation in Matlab. The 
important issue will be then to assess the performance of the iLAB implementation 
as regards execution time, aiming at an on-line implementation of the algorithms. 
 

 
Figure 8: Distributed Network Attack in WIDE – TCP SYN DDoS. 

 
In the second attack scenario, we shall analyze a distributed denial of service 
attack directed to a single victim host with destination IP address 95.5.63.90, 
originated at an attacker botnet under IP address 165.35.115.0/24. Figure 8 
depicts this situation. 
 
In this case, traffic is aggregated on an origin host basis, using packet origin 
IP address and bitmask 255.255.255.255. The sliding-window time-scale granularity 
used by NewNADA to compute absolute-deltoids is the same as before. The evaluation 
for this traffic scenario is only presented for the prototype implementation under 
Matlab, as results in the iLAB experimentation are exactly the same. 
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5. Experimental results 
 
5.1 Use case a1: Adaptive traffic sampling 
 
We divide the validation results into three parts. First, we study the efficiency 
and convergence of our adaptive solution and its ability to adapt to the 
heterogeneity of flow rates and to the predefined collected traffic overhead. 
Second, we show the practical benefits of deploying our optimization approach by 
comparing it to the common static configuration approach where sampling is only 
performed at the edge of the network. For fairness, the comparison is done at 
equal overhead. Last but not least, we present a global sensitivity analysis of 
the importance of the different parameters of our algorithm and we calculate their 
influence on the system behavior. This analysis will confirm our focus on the 
overhead threshold in the first two parts. 
 
5.1.1  System efficiency, adaptability and convergence 
 
The proposed monitoring system should satisfy the following properties: 

• Convergence: Starting from any initial configuration value Pinit of all 
sampling rates (usually a low value), we want to know if our system is able 
to converge to an equilibrium in its configuration and hence in the 
realized monitoring accuracy. To detect this equilibrium, we will 
experiment the same scenario for different initial sampling rates and check 
the final state of the system. The system converges when the mean relative 
error stabilizes and stops improving. 

• Reactivity: Any change in the network traffic should bring the system 
temporary out of its convergence state before it converges again toward a 
new equilibrium. We want to observe if our system can detect changes in the 
network traffic and if it is able to find quickly this new equilibrium.  

• Target Overhead: We want to test the capability of our system to respect 
the imposed constraint on the rate of measurement records. Among the set of 
configurations resulting in a rate of records equal to the imposed 
constraint, the system should be able to find the one minimizing the error 
on the target measurement task. 

 

 
Table 1: Traffic traces information 

 
The above points will be addressed next by real experiments over the two network 
topologies Geant-like and Abilene-like and by the help of the two traces S and V 
described in the Table 1.  
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Figure 9: Mean relative error vs. time using Trace S 

 

 
Figure 10: Mean relative error vs. time using Trace V 
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Figure 11: Resulting overhead vs. time using Trace S 

 

 Figure 12: Resulting overhead vs. time using Trace V 
 
In Figure 9, Figure 10, Figure 11 and Figure 12, we plot the evolution of the mean 
relative error obtained over all AS-to-AS flows (on the left hand side) and the 
resulting overhead in NetFlow-records/s (on the right hand side) over time using 
the two traces S and V. Each point in the graphs corresponds to an update of the 
sampling rates, either in the increase (overhead O less than the target value) or 
in the decrease (overhead O larger than the target value and the buffer B is 
full). For this experiment, we set the timer t for updating sampling rates to 1 
minute, the regulator σ  to 2, the minimum possible sampling rate SRmin to 0.0005 
and the maximum possible one SRmax to 1. The TO is set to 200 NetFlow-records/s. 
 
Three initial sampling rates are considered: 0.005, 0.01 and 0.02. We can 
immediately observe that the system keeps improving the global accuracy while 
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fully profiting from the available resources for measurement collection. At the 
beginning, the system exponentially increases sampling rates until the TO is 
reached. Once done, it keeps improving the accuracy of the estimation while 
maintaining the overhead around its target value. After little iteration, the 
system reaches equilibrium where the mean relative error tends to oscillate around 
its minimum value. For the smooth trace S, the equilibrium does not change much 
along the trace. For the other variable trace V however, we can see in the middle 
of the trace sudden increases in the error caused by sudden changes in the 
traffic. The system adapts to these changes by recalculating a new optimal 
configuration, always at a constant overhead. Note how the behavior is almost 
identical for the three initial sampling rates illustrating the stability of our 
system and its ability to converge in small number of iterations (few minutes 
here) to an equilibrium that only depends on traffic conditions and monitoring 
target and not on the initial configuration of sampling rates.  
 

These results are illustrated in  
Figure 13, presenting the evolution of some sampling rates over the time starting 
from an initial configuration Pinit equal to 0.005 and using the trace V. We can 
observe the ability of our system to converge to equilibrium in its configuration. 
Once done it keeps oscillating around this optimal configuration until the network 
conditions change. Moreover, we notice the capability of our system to track any 
change in the network conditions as well as to adapt sampling rates to move 
smoothly towards a new optimal configuration. To show the spatial distribution of 
the sampling rates of the different monitors labeled in Figure 4, we plot in 
Figure 14 their sampling rates at time instant 2023s. 
 

 
Figure 13: Evolution of some sampling rates vs. time using trace V and TOPG. 
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Figure 14: Sampling rates of the different monitors at time instant 2023s. 

 
Figure 15 shows the value of the mean relative error for different target overhead 
values. These results are for topology TOPG and Trace V. One can immediately 
notice the impact of the TO on the traffic estimation accuracy. There is a clear 
reduction of the overall measurement error from 0.402 for a TO equal to 100 
NetFlow-records/s, to 0.08 for a TO equal to 300 NetFlow-records/s. Indeed, for 
each TO value, the system tries to find the best configuration that minimizes the 
traffic estimation error. When TO is low, the system has to lower the sampling 
rates in the least significant monitors with the objective to reduce the rate of 
collected measurement records without much compromising the estimation accuracy. 
Allowing more overhead gives the system more freedom in increasing the sampling 
rates of the most significant monitors looking for better estimation of the sizes 
of the target flows. 
 

 Figure 15: Average mean relative error for different TO values. 
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The main strength of our system is that it is able to cope with any TO value and 
provides for this value the best configuration of monitors. Now, this 
configuration might not satisfy the administrator in terms of the accuracy of the 
measurement, in this case the only remaining solution is to increase the value of 
TO. In a future research we will be working on an enhanced version of our system 
that adapts the TO in such a way to realize the measurement task with some 
predefined minimum accuracy. For now, we suppose the TO is a constraint set by the 
administrator and we let our system find the best configuration that maximizes 
accuracy. 
 
To illustrate the capacity of our system to maintain the measurement overhead 
around the TO, we plot in Figure 16 the measured overhead in terms of collected 
NetFlow-records/s as a function of experimentation time and this is for three TO 
values. We can clearly see how for each experiment, whose traffic estimation 
accuracy is reported in Figure 15, the real overhead is maintained around the 
target value and how our system is able to converge and adapt to variations in 
traffic conditions along the trace lifetime. 
 

 
Figure 16: Resulting overhead vs. time using three different TO values. 

 
The experiments over the Abilene-like topology confirm the same findings about the 
performance of our system. To give a sample of the obtained results, we plot in 
Figure 17 the mean relative estimation error averaged over all flows as a function 
of the TO. This figure is the equivalent of Figure 15 for the Geant-like topology. 
We can notice how the two figures look the same. The error for the Abilene-like 
topology is slightly smaller which comes from the smaller size of this topology 
and hence the larger volume of flows. Note that both experiments are conducted at 
equal total traffic driven by the same Trace V. 
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Figure 17: Average mean relative error vs. target overhead for the Abilene-like topology. 

 
5.1.2  Fairness and comparison with the local static method 
 
In the last part, we argued that an adaptive system that coordinates sampling 
responsibilities between the different monitors can considerably improve the flow 
monitoring capabilities of the network. In this paragraph, we are interested in 
comparing our adaptive solution with the standard static configuration of NetFlow 
in order to assess the ability of our system to avoid unnecessary measurements 
while tracking efficiently the target flows at constant overhead. 
 
By minimizing the sum of flow relative errors, our system gives the same weight to 
each flow independently of its volume. This should naturally lead to a fair 
allocation of sampling rates that homogenizes estimation errors over target flows. 
This ability to track fairly (same for all flows independently of their sizes) 
small and large flows constitutes one of the main strengths of our system. Any 
static configuration of sampling rates does not provide this fairness feature. 
Note that we are talking here about aggregate flows Fi. Each aggregate flow is 
composed of a set of 5-tuple flows whose total volume is estimated. In order to 
illustrate the fairness of our approach with respect to target flows, we plot in 
Figure 18 the evolution of the mean relative error of all the flows over time. 
 

 Figure 18: The evolution of the mean relative error of all the flows vs. time. 
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Starting from a large mean relative error, we can clearly note how our system 
keeps reducing this estimation error for all flows at almost the same rate even 
though these flows span different volumes. Some of the flows unfortunately still 
suffer from a large relative error because of their very small volume. 
 
Then, we move to the comparison of the performance of our system with the widely 
deployed NetFlow solution (the local static solution), which consists of 
monitoring traffic at the edge of the network with static sampling rates. For this 
latter solution, each flow is monitored only one time at the input interface of 
the edge router of its originating AS. 
 
This solution has the advantage that every sampled packet belongs to one of the 
flows of interest thereby flows can be easily formed at the collector. The problem 
is that this offers few options to sample a flow, and thus small flows that get 
mixed at their input interface with large flows suffer from a low sampling rate. 
Our approach has the nice feature of giving more choices for where to sample a 
flow, hence the protection of small flows. One has to add the dynamic feature of 
our approach and its ability to combine multiple measurements for the same flow 
and to limit the overhead. For comparison purposes, we use two specific accounting 
applications: 1) Traffic matrix estimation: all AS-to-AS flows are considered, and 
2) AS traffic estimation: the total volume of traffic generated by each stub AS.  
 
For this experiment, we use the Geant-like topology and the variable traffic trace 
V. The parameters of the experimentation are set as in the previous sections. For 
the sampling rate in the case of the local static configuration, denoted by p, we 
set it in such a way that the resulting reporting overhead is the same as in our 
network-wide adaptive case, and this for the main purpose of fairness between the 
two approaches. If Ns is the total number of 5-tuple flows in the trace, D the 
duration of the trace, ( )Sπ  the probability to sample a 5-tuple flow of size S 
packets, S being a random variable, then the sampling rate p is given by: 

[ ]
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)1(1*)(* π  The term on the right-hand side is no other 
than the target overhead of our adaptive architecture. The term on the left-hand 
side is an estimation of the rate of collected records in the local static 
configuration.  

 
1) Traffic matrix estimation: While giving on average close performance to our 

approach, the local static solution presents sampling bias against small flows 
as we can see in Figure 19 for the case of the smallest 20 flows. 
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 Figure 19: The mean relative error of flow measurements: Our global adaptive approach vs. 
local static one. 

 
This figure plots the average mean relative error as a function of the TO. 
With the local static solution, small flows dilute within large flows and 
suffer from low estimation accuracy. If this happens, no other choices are 
available to sample them elsewhere. However, with our approach, we are able to 
track small flows on other lightly loaded links inside the network and combine 
measurements from different routers together without incurring much overhead 
on the system. As we can see, in order to track small flows using the local 
static solution with a similar accuracy to the one we obtain using the 
adaptive solution, we have to use a TO value larger than 150% of the value 
used by the adaptive solution. 

 
2) AS traffic estimation: we change our objective and instead of defining a flow 

as being the volume of traffic from one stub AS to another stub AS, we define 
it as the total volume of traffic generated by each stub AS. We count both the 
outgoing and ingoing traffic for each AS. The best configuration is the one 
that minimizes the sum of mean square relative errors of AS traffic 
estimators. Changing target measurement is very easy in the context of our 
approach; one has to correctly define an aggregate flow, the configuration of 
sampling rates follows automatically. In this scenario, the traffic volume of 
an AS should be proportional to the weight attributed to it during the trace 
dispatching phase. To further prove the generality and efficiency of our 
approach in compared to the standard local static one, we perform two tasks 
within this scenario: In a first time, we estimate the traffic volume of the 
different ASes (All ASes task). Then, we estimate the traffic volume of ASes 
contributing to more than some percentage of the total traffic trace (Large 
ASes task). We present results for a 6% threshold. Some ASes are smaller than 
this threshold but there traffic might still be reported to the central 
collector, yet it is not included in the optimization loop and is not returned 
to the monitoring application. The main purpose of our architecture is to 
reduce this volume of undesirable traffic. The All ASes task is a particular 
case of this second general task and can be obtained by setting the threshold 
to 0%. 
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 Table 2: Comparing AS traffic volume estimations 
 
Table 2 presents a summary of the experimental results for a selection of ASes. 
The first two columns present the AS number and its associated weight. The other 
columns present the AS traffic volume estimation in number of packets and the 
ratio of this volume with respect to the total estimated network traffic. Four 
configurations are presented, the one without sampling as a reference 
configuration, the local static one, the adaptive All ASes one, and the adaptive 
Large ASes one. A set of observations can be made from these results.  
 
The first observation is that the All ASes adaptive configuration provides more 
accurate results for all AS traffic volumes independently of their sizes. The 
traffic volume of ASes is better estimated than with the local static 
configuration, especially for small ASes whose traffic get diluted within the 
traffic of large ASes if only sampled at the edge. The second observation we can 
make is that for large ASes, one can even get a better estimation by only focusing 
in the optimization on the sizes of these large ASes. In fact, by only focusing on 
large ASes we can avoid unnecessary data coming from small ASes and thus profit 
from the monitoring resources to improve the accuracy of large ASes.  
 
As requested, small ASes contributing to less than 6% of the total network traffic 
get ignored by our optimization, hence the decrease in their accuracy. Indeed, the 
overhead these small ASes generate with the All ASes configuration and the local 
static one is used to better sample the large ASes and to better estimate their 
traffic volumes. These results illustrate the adaptive nature of our approach and 
its capacity to cope with the monitoring application needs, always at constant 
monitoring overhead. 
 
5.1.3  Global sensitivity analysis 
 
In the previous two paragraphs, we give a particular attention to the impact of 
the overhead target value. Yet, the system has other parameters and it is 
important to evaluate their impact as well. In this paragraph, we demonstrate 
indeed that, apart from the overhead target value, the other parameters have minor 
impact on system performance. 
 
The goal of global sensitivity analysis is to characterize, qualitatively or 
quantitatively, what impact an input parameter has on a system output and how it 
compares with the impact of the other parameters. Fourier Amplitude Sensitivity 
Test (FAST) [Cukier73, Cukier75] is considered to be one of the most efficient 
methods in sensitivity analysis [Duffield02, Duffield05]. Among its advantages 
are: fast implementation, possibility to deal with no monotonic models, arbitrary 
large variations in input parameters, and no need for the knowledge of the 
mathematical model.  
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The main idea of FAST is to assign to each parameter a distinct integer frequency 
(characteristic frequency). Then, for a specific parameter, the variance 
contribution can be singled out of the model output with the help of the Fourier 
transformation. Therefore, FAST is also referred to as variance based sensitivity 
analysis. Specifically, let us consider a nonlinear model ),...,,( 32,1 nxxxxfy =  
where nx  are parameters. We emphasize that the FAST method does not require the 
analytic knowledge of the function f(·). Various search functions have been 
proposed. The search function must let the parameter ix  to oscillate with 
frequency iw . For instance, the authors of [Saltelli99] have proposed the search 
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cumulative distribution function for ix . To make more efficient use of the model 
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uniformly in the interval [0, π2 ). The model output becomes a periodic function 
with period π2 . Thus, we can represent the model with a Fourier series, 
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If we denote a sample of size N as S = {s1, s2... sN}, then, using either (1) or 
(2) as a search function, we can obtain the sampled values of the parameters Xi = 
{xi1, xi2... xiN}, and the discrete Fourier transform coefficients  
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The variance of the model output can be decomposed into variance components at the 
integer frequencies, 
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By summing the spectrum values 2/][ 22
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frequencies iw  and their higher harmonics, the partial variance in model output 
arising from the uncertainty ix , iV  can be estimated by 

∑∆=
p

ipi wV where 2/)1( −≤ Npwi . The ratio 
V

Vi  measures the contribution of 

parameter ix . This ratio is also referred to as the first-order sensitivity index. 
 
Because the characteristic frequencies are integers, there will be an aliasing 
effect if one frequency is a linear combination of the others.  
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It is said that a frequency set is free of interferences to an order M if 

∑ ∑ +≤≠
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i
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1 1
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where ia an integer, and M is a design integer (usually 4 or 6). In order to avoid 
the interference effect, the maximal value of p in calculating iV  should be M. In 
[Cukier73], the authors have proposed the following empirical formula for 
calculating the characteristic frequencies free of interference up to order M = 4: 

nw Ω=1 , and .....2,11 nidww inii =+= −+−  The parameters nΩ and kd can be found in a 
table provided in [Cukier73]. Below we give several lines from that table. 
 

 
Table 3: Frequencies 

 
Then, for instance, for the case of six input parameters we obtain the following 
values of the characteristic frequencies: 
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We have applied the method FAST to our system in order to characterize the impact 
of the different parameters used in experimentations on results. Table 3 
summarizes the set of evaluated parameters with their ranges. The last column 
presents the impact of each parameter on the system output. It is immediately 
noticed that the parameter having the most important impact on the system output 
is the target overhead TO, while the other parameters have a relatively low impact 
on results, in the order of 1% or less. Indeed, for some value of TO, there is an 
optimal configuration of monitors and our system will converge to this optimal 
configuration in a robust manner with respect to the other parameters. It is only 
by changing the value of TO that the system will converge to another optimal 
configuration yielding another measurement precision. 

 

 
Table 4: Parameters of the experiment 
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5.2 Use case a3: Cooperative traffic anomalies and attacks detection 
 
5.2.1 Cooperative distributed anomaly detection 
 
In this part, we will present the results of the experimental setting in a 
realistic network scenario. The data used for validation are coming from IP-level 
traffic flow measurements collected over the Abilene backbone network. The data 
are derived by processing sampled flow data from every router of this network for 
a period of one week. In this dataset we distinguish between incoming and outgoing 
traffic, as well as UDP and TCP flows. For each of these four categories, we 
computed seven commonly used traffic features: byte, packet, and flow counts, 
source and destination IP address entropy, as well as unique source and 
destination IP address counts. The state variable to exchange is of dimension 28 
(7 parameters per 4 categories). All metrics were obtained by aggregating the 
traffic at 1 second intervals resulting in a 28x86400 data matrix per measurement 
day per interface. We analyzed 41 interfaces distributed in 11 different routers. 
All values are stored as integer over 32 bits, resulting in an overall rate of 
28x41x32=36768 bits per second for transmitting the data without compression. 
   
In the first setting, we assume that all these routers have to send their state 
vectors to a central aggregation point. We evaluate the performance of the scheme 
in steady state in term of level of MSE attained as a function of overall rate in 
term of number of bits per sample of 28 x41=1148 state values. The sum of variance 
over all states amount to 8.8x 1016. By using the diffusion scheme described here, 
we can achieve performances shown in Figure 20.  
 
We show here three settings: in the first setting we just implement a local 
compression without taking into account the spatial correlations; in the second 
setting named spatial compression we implement the fully distributed scheme, but 
assuming that the temporal correlation horizon is 1 (that is not really the case); 
in the third setting we are fully with a temporal correlation horizon T=5. 
  

 
Figure 20: Overall MSE achieved in the single hop scenario for the temporal, the spatial 

and the spatio-temporal setting 
 
One can observe that with just 2000 bits per samples (meaning a compression rate 
higher than 18) we can achieve an MSE that is 7 order of magnitude less than the 
initial overall MSE, moreover applying spatio-temporal compression results in an 
MSE that is 4 order of magnitude lower that just doing a local compression. In 
particular, the spatio-temporal compression achieves with 400 bits the performance 
that the local compression alone achieves at 2000 bits.  
 
It is worthy to discuss about the overhead involved in this scenarios. For this 
purpose, we show in Figure 21 the MSE achieved at one node as a function of the 
iteration number. Each iteration took 30 seconds as we estimate the covariance 
matrix applying the method described above using at least 30 samples to have an 
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acceptable estimation. At each iteration, a new projection matrix has to be 
forwarded to the central point. We assume that projection coefficient is encoded 
into 16 bits. However, projection matrix for the spatio-temporal case is larger as 
the dimension of the initial space is 5 times larger. The number of forwarded 
projection varies as the optimal number of projections changes. 
 

 
Figure 21: MSE achieved after a number of iteration of the distributed compression scheme 

for a global rate of 1200 bits per sample} 
 
Figure 21 shows that the number of needed iteration to stabilize the estimation is 
also different between the spatial and spatio-temporal scheme; the spatio-temporal 
scheme need about 20 iterations where the spatial scheme need about 40 iterations. 
Accounting all these source of variations, we have observed around for the spatial 
scheme and overhead around 119 Kbits and for the spatial-temporal scheme an 
overhead around 962 Kbits. Accounting the difference in needed rate for achieving 
a giving MSE between spatial and spatio-temporal scheme (for example to achieve an 
overall MSE of 2x1014 we need 2000 bits per sample for spatial scheme and 400 bits 
per sample for spatio-temporal scheme), the difference in overhead between the two 
scheme is covered in 527 sec (about 9 mins of operation), and the difference 
between the uncompressed scheme and the spatio-temporal scheme is covered in 25 
secs, meaning that the use of the overhead is largely balanced with the benefit. 
The overhead analysis gives similar results for other values of global rate. 
 
Now we validate our proposed cooperative scheme by evaluating two behaviors: the 
first behavior is asocial, i.e. the node does not try to help his neighbors in 
improving the estimation of the preference list of its neighbors; the second 
behavior is social, i.e. the node plays the game and help his neighbors in 
improving their estimation. To evaluate we run two times the same simulation; the 
first time with all nodes having a social behavior and a second time with one node 
that is asocial. The preference list of an asocial node will become different from 
a social node, as the asocial node will not include the neighbors preference list. 
To make the comparison fair, we will calculate the MSE on the intersection of the 
asocial and social node preference list as a function of its neighbors’ 
transmission rate. We choose the initial member of the preference list of the 
asocial and social node to be some states from nodes several hops away from the 
node. 
 
Figure 22 compares the performance of the asocial and the social nodes. It can be 
seen that the asocial node reach fast an MSE floor that it cannot puncture. This 
is coming from the fact that the neighbors add their own preference list to the 
projection to send. As the neighbors cannot improve their estimation because of 
the asocial node selfishness, the estimation of the asocial node is affected. 
However when the node becomes social the performance improves significantly. This 
validates the proposed cooperative scheme.  
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Figure 22: MSE as a function of neighbor rate achieved for a social and an asocial node 

 
As a last validation, we are checking how the constraint on Dmax

i  works. We are 
observing that all nodes in our network have a weighted distortion on their 
preferred list equal to Dmax

i  irrelevantly of the rate constraint on connected 
links. However, the number of elements in the preference list depends strongly on 
the rate constraint. With increase in the rate constraint, the number of elements 
in the preference list increases. This means that a larger number of nodes will 
get a specific node state and the diffusion scope of a particular state expands. 
This shows that the MSE constraint plays his role well, as it is there to control 
the number of variables and to control that the entire network is not flooded by 
weak approximation of all node states. 
 
5.2.2 Joint anomaly detection and classification  
 
Let us first present the prototype evaluation of our method in Matlab. The NewNADA 
algorithm detects an anomalous sliding-window at time 14:07:00 (i.e., at the end 
of the 21-st sliding-window) due to an anomalous absolute deltoid in the three 
volume metrics, i.e., # SYN, # pkts, and # bytes. Figure 23 depicts the brutal 
modification in all of the metrics when the attack is deployed. The Unsupervised 
Anomaly Detection algorithm is therefore fed with all the traffic that belongs to 
the 21-st sliding-window. Given the traffic aggregation level and the time-scale 
used by NewNADA, each pattern iY ϵ Y consists of all the IP packets directed to a 
certain IP network destination address IPdsti/24. 
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Figure 23: Anomaly detection based on absolute-deltoids change detection in WIDE, using 

destination IP address /24 as traffic aggregation. 
 
In order to describe each of these patterns, we shall use some of the attributes 
that were used in [Fernandes 2009] to define classification signatures for general 
network attacks (DoS, DDoS, and Scans). The main idea of this evaluation is to 
show that our unsupervised algorithm can automatically detect and build a 
signature without any previous knowledge about the attack under analysis. Table 5 
presents the set of attributes. 
 
 

Id Attribute Description 
1 nDsts Nº of different destination IP addresses 
2 nSrcs Nº of different source IP addresses 
3 nPkts/nDstPorts Ratio of total packets to Nº of different dest. Ports 
4 nSrcs/nDsts Ratio of number of sources to number of destinations 
5 nICMP/nPkts Proportion of ICMP packets 
6 nEcho/nPkts Proportion of Echo Request/Reply packets 
7 nSYN/nPkts Proportion of SYN packets 
8 nRST/nPkts Proportion of RST packets 

Table 5: Set of Attributes for the Feature Space. 
 
The input feature space is therefore X = {x1, x2, …, xn}, where each xi is a 8-
dimensional vector that summarizes the characteristics of the set of IP packets 
directed to a certain IP network destination address IPdsti/24. The value n is 
simply the number of different destination address IPdsti/24 found in the 
anomalous sliding-window. 
 
The Unsupervised Anomaly Detection algorithm runs in three consecutive steps. The 
first step consists in sub-space clustering and evidence accumulation, the second 
step consists in identifying the anomalous cluster, and the last step consist in 
automatically generating the filtering rules and selecting the top-M most relevant 
clusters to build a signature for the detected anomaly. Let us analyze each of the 
steps. 
 
The sub-space clustering algorithm produces a clustering ensemble P = {P1, P2, …, 
PN} that contains the N = (8*7)/2 = 23 partitions. The information provided by 
these N partitions is used by the evidence accumulation algorithm to produce a 
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similarity matrix we shall refer to as SEAC, which represents some notion of 
distance between the n patterns iY  ϵ Y. 
 
In order to appreciate the great advantage of using SEAC w.r.t. a traditional 
clustering approach, based on the information provided by the complete feature 
space X, we shall compute a similarity matrix Straditional for the n patterns 
represented in X. The (n ∗∗∗∗ n) similarity matrix Straditional accounts for the inter-
pattern distance between the n patterns, where element (i,j) stands for the 
Euclidean distance between patterns i and j: 
 

  
Figure 24 presents a two-dimensional plot of the information provided by both 
similarity matrices SEAC and Straditional, using a Multi-Dimensional Scaling (MDS) 
analysis. MDS permits to explore similarities in high-dimensional data, assigning 
a location to each couple of patterns described in a similarity matrix into a low-
dimensional space. In order to assess the power of discrimination provided by each 
similarity matrix, we assume in Figure 24 that the anomalous patterns are known in 
advance.  
 

 
(a) MDS of Straditional 

 
(b) MDS of SEAC 

Figure 24: Multi-Dimensional Scaling for (a) Straditional and (b) SEAC. The presence of the 
anomalous cluster becomes evident in the SEAC similarity matrix. 
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In the case of Straditional, we can appreciate that the anomalous patterns are mixed-
up with the normal ones, and the discrimination using all the attributes at the 
same time becomes difficult. In the case of SEAC, the anomalous patterns are 
perfectly isolated from the rest of the patterns, providing a powerful 
discrimination measure of similarity. 

 
Figure 25: Distribution of inter-pattern similarity in SEAC. 

 
The second step of the algorithm consists in detecting the anomaly. As we 
explained before, once we have built SEAC we can apply any clustering algorithm to 
this new similarity matrix so as to find a consistent data partition. In our 
anomaly detection application, we are not particularly interested in building a 
partition of the data but in identifying the anomalous patterns, which by 
definition will lie in small and well-formed clusters. The reader should remember 
that SEAC gives high priority to small clusters, through the importance function 
wk(n(k)). Therefore, the detection simply consists in identifying the most similar 
patterns in SEAC. 
 
Figure 25 shows a histogram on the distribution of inter-pattern similarity, 
according to SEAC. Select the most similar group of patterns results in a compact 
cluster of 53 patterns. A further analysis of the IP packets that compose each of 
these patterns reveals the same origin IP address, which corresponds to the 
attacker’s host 204.243.26.29. Each individual pattern corresponds to a flow of 
SYN packets directed towards a different destination IP network address 
162.225.xxx.0/24. 
 
The reader should note the astonishing effectiveness of this unsupervised 
detection approach, which has perfectly detected and isolated the distributed 
attack in a completely blind fashion, without assuming any particular traffic 
model, detection threshold, significant clustering parameters, or even clusters 
structure beyond a basic definition of what an anomaly is. 
 
The last step of the Unsupervised Anomaly Detection algorithm consists in 
automatically building easy-to-understand and easy-to-visualize discrimination 
rules that can be used to construct a signature for the anomaly that has been 
detected and isolated. As we explained before, we take advantage of the low-
dimensionality clustering ensemble P = {P1, P2, …, PN} built during the sub-space 
clustering step to produce both absolute and splitting rules.  
 
Figure 26 depicts some of the partitions Pi where both absolute and splitting rules 
were found. The partition depicted in Figure 26.a presents three clusters, one of 
them exclusively composed of anomalous patterns. This partition builds two rules; 
the former is a splitting rule, relative to the number of different destination IP 
addresses found in the IP packets aggregated into each pattern. Given the 
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distributed nature of the network scan attack, it is clear that the number of 
destination IPs must be much larger than in the case of normal-operation traffic. 
The latter is an absolute rule, in which almost every pattern of the anomalous 
cluster has the SYN flag activated for all of its IP packets. This rule makes 
perfect sense, because the network scan is a SYN scan.  
 
The signature produced by these two rules can be simply expressed as <(nDsts > 

1λ ) & (nSYN/nPkts == 1)>. Note however that not every anomalous pattern depicted 
in Figure 26.a will be correctly classified using this signature, basically 
because there are some patterns for which attribute nSYN/nPkts is not strictly 
equal to 1. 
 
The partition depicted in Figure 26.b shows two clusters, but in this case the 
smallest one contains not only anomalous patterns but also some other patterns not 
identified as such. Given that the filtering rules are defined in a per-cluster 
basis, a new splitting rule two separate both clusters is generated for attribute 
nSYN/nPkts, which permits to relax the absolute rule previously defined. The new 
rule for nSYN/nPkts is therefore <(nSYN/nPkts > 2λ )>. Given that this new rule 
covers the previous one, the absolute rule <(nSYN/nPkts == 1)> is discarded. 
Another rule is also identified in this partition, consisting in an absolute rule 
for attribute nSrcs. This absolute rule specifies that all the packets come from 
the same origin IP address, which corresponds to the attacker’s IP address.  
 

 (a)  (b) 

 (c)  (d) 
Figure 26: Absolute and splitting rules for anomaly signature. 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 3.3                                                        Page 52 / 64 

 
Adding this rule to both previously generated rules produces a new anomaly 
signature that can be expressed as: 
 
 <(nDsts > 1λ ) & (nSYN/nPkts > 2λ ) & (nSrcs == 1)> 
 
The two other partitions depicted in Figure 26.c and Figure 26.d produce rules that 
are already contained in this signature, which further verifies its relevance. The 
most interesting observation of this step of the algorithm is that the generated 
anomaly signature permits to effectively isolate all of the patterns that conform 
to the network SYN scan, correctly classifying all the corresponding IP packets 
that are aggregated into each pattern. 
 
Let us now present the evaluation of the second traffic scenario, consisting of a 
TCP SYN DDoS attack. Table 2 presents the set of attributes that are use to 
describe each of the traffic patterns in the feature space.  
 
Id Attribute Description 
1 nDsts Number of different destination IP addresses 
2 nPkts/nDst Ratio of number of packets to number of different destinations 
3 nDstPorts Number of destination ports 
4 nSYN/nPkts Proportion of SYN packets 
5 nPkts/sec Number of sent packets per second 

Table 6: Set of Attributes for the Feature Space. 
 
Given this set of attributes, the sub-space clustering algorithm produces a 
clustering ensemble P = {P1, P2… PN} that contains N = (5*4)/2 = 10 partitions. 
 
The detection of the attack is done in exactly the same way as for the SYN network 
scan attack; hence we shall focus the attention on the last step of the 
Unsupervised Anomaly Detection algorithm, consisting in building the filtering 
rules and the corresponding attack signature.  
 
Figure 27: Absolute and splitting rules for a TCP SYN DDoS attack. depicts some of the 
partitions Pi where both absolute and splitting rules where found (those ranked 
with highest Fisher Score). The partition depicted in Figure 27.a presents two 
clusters, one of them exclusively composed of anomalous patterns. This partition 
builds three different rules; the former is an absolute rule, in which every 
pattern of the anomalous cluster has the SYN flag activated for all of its IP 
packets. As before, this rule makes perfect sense, because the DDoS attack is a 
TCP SYN DDoS attack, which uses exclusively SYN packets. The second rule is a 
splitting rule also relative to the proportion of SYN packets; as in the case of 
the network SYN scan, this splitting rule imposes that not necessarily every 
packet of the DDoS attack must be a SYN packet, but that it is sufficient to have 
a fraction of SYN packets larger than a certain threshold λλλλ1111. The last filtering 
rule is an absolute rule regarding the number of destination hosts, which must be 
equal to 1. Therefore, the predominant filtering rule obtained from Figure 27.a 
can be expressed as <(nSYN/nPkts > λλλλ1111) & (nDsts == 1)>.  
 
The partition depicted in Figure 27.b shows three clusters. If we consider the 
proportion of SYN packets, it seems quite clear that both clusters number 2 and 
number 3 are composed of anomalous patterns. However, we can appreciate that only 
those patterns belonging to cluster number 3 have been detected as anomalous by 
our algorithm. If we now consider the number of packets per second sent by each 
host, we can see that those patterns detected as anomalous have a packet rate 
remarkably high w.r.t. those patterns in cluster 2, which explains the distinction 
produced by the clustering algorithm. Indeed, the algorithm has detected those 
anomalous patterns that were more aggressive during the DDoS attack, sending more 
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than λλλλ2222        packets per second to the victim host. Therefore, the additional filtering 
rule obtained from this partition is <(nPkts/sec > λλλλ2222)>. 
 
The last filtering rule comes from the partition depicted in Figure 27.c, where 
almost every anomalous pattern has the same single destination port. This 
translates into an absolute rule of the form <(nDstPorts == 1)>.  
 
Combining the filtering rules produces a new anomaly signature for the TCP SYN 
DDoS attack, which can be simply expresses as:   
 
 <(nDsts == 1) & (nDstPorts == 1) & (nSYN/nPkts > λ1) & (nPkts/sec > λ2)> 
 
This signature is able to correctly isolate those patterns that represent the most 
aggressive hosts of the botnet where the DDoS attack comes from.  
 
 

 (a)  (b) 

 (c)  (d) 
Figure 27: Absolute and splitting rules for a TCP SYN DDoS attack. 
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To conclude with the experimental section, we shall present the evaluation of the 
iLAB implementation, previously described. The implementation of the NewNADA 
algorithm and the Unsupervised Anomaly Detection module is done in Objective-CAML, 
a general-purpose programming language developed by INRIA, which is specially 
designed with program safety and reliability in mind. For high performance, a 
native-code compiler permits to directly integrate these implementations in 
numerous architectures. 
 

 
Figure 28: iLAB Topology for Experimentation. 

 
The iLAB framework provides a graphical interface to setup the experimentation, 
using a Virtual Wall application. Figure 28 shows a screenshot of the topology 
used to reproduce and detect the distributed network SYN scan attack, using real 
traffic traces from MAWI. In this topology, hosts with labels “node0” and “node1” 
replay a MAWI trace free of anomalies as background traffic, sending packets to 
host labeled as “node3” with the original IP addresses. The “node3” host simply 
acts as a gateway for all the traffic directed towards the original IP addresses 
of the MAWI trace. The anomaly detection algorithms run on host labeled as 
“node2”. In order to simulate the network SYN scan attack, “node0” replays a trace 
composed of only those traffic packets from the real network scan, previously 
extracted from the MAWI trace. 
 
The topology is implemented through a Network Simulator tcl file, specifying the 
number of hosts, their interconnections, the routing tables as well as the 
operating systems that will run on each host. In our case, we have run our 
algorithms in a Linux Debian-based OS distribution. Figure 29 shows a screenshot 
of the NS configuration file. 
 
As we claimed before, the results of the detection of the network scan attack as 
well as the automatic generation of a signature that were obtained in the iLAB 
experimentation are exactly the same as those already presented for the prototype 
in Matlab, simply because the traffic traces that were used are exactly the same. 
We will therefore focus the attention on a more representative performance 
indicator for an on-line anomaly detection framework as the one we have 
implemented: execution time. 
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Figure 29: iLAB Topology Generation via NS File. 

 
Table 7 presents the execution time involved in the processing and detection of 
the network scan in a temporal sliding-window of 20 seconds long. The execution 
time corresponds to the time involved in processing all the traffic patterns that 
belong to the 21-st sliding-window. Execution time is measured in different 
platforms, including a host provided by iLAB (Id Test 1) and a host of our 
LaasNetExp platform (Id Test 2). In order to compare the performance of the 
algorithms implemented in native-code with the prototype implementation, we also 
include the execution time measured in Matlab to process exactly the same temporal 
sliding-window (Id Test 3).  
 

Id Test Platform Execution Time (s) 
1 AMD Opteron Dual-Core, 2.0 GHz, 4Go RAM, 

Debian Lenny 5.0 90.8 

2 Intel Dual-Core, 3.2 GHz, 4Go RAM, Ubuntu 
Karmic Koala 9.10 40.5 

3 Intel Quad-Core, 2.4 GHz, 2Go RAM, Fedora 
Constantine 12 24.3 

Table 7: Execution time for a 20s sliding window and different platforms. 
 
In the three cases, the execution time is higher than the length of the temporal 
sliding-window under analysis. From our tests, we can see that the prototype 
Matlab implementation outperforms the native-code implementation, subject to the 
particular platform where the algorithms run.  
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Our native-code implementation was originally designed for detection performance, 
paying less attention to code-optimization regarding execution time. In one hand, 
these results clearly suggest that the native-code implementation should be 
improved; on the other hand, we can expect an execution time that will be lower 
than the prototype Matlab implementation, which is already good enough for a non-
optimized prototype in a platform-code-based application like Matlab. 
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6. Update on Section 6 of D3.2: Recommendation for 
integration into common ECODE architecture 

 
In this section, we describe more in details the new recommendations for the 
integration of the different use cases related solutions within the common ECODE 
architecture. This section updates the one numbered 6 in D3.2. 
 
6.1 Use case a1: Adaptive traffic sampling 
 
Regarding the Adaptive traffic sampling architecture, we mainly provide new 
recommendations related to the following interfaces of the common ECODE 
architecture: 

• The CM interface which is responsible for communication between the TCI 
(Translation and Communication Interface) and the Monitoring Points (MP). 

• The TR Interface which represents the feedback from the TCI to the Machine 
Learning Engine (MLE).  

• The DP+TD interfaces which provide a way for passing the information from 
the MLE to the TCI. 

 
6.1.1 CM Interface  
 

• Types of monitoring information used as input to the Machine Learning 
engine: 

 
Our traffic monitoring and sampling service will be incorporated within the 
ME (Monitoring Engine) component of the global ECODE architecture, and will 
rely on the CM (Cognitive Monitoring) interface towards exporting the 
collected statistics to the MLE. The latter statistics consists of NetFlow 
Reports and more specifically of the Cisco Netflow(tm) version 5 packet 
format (more details on 
http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc/nfc_3_0/nfc_ug/
nfcform.htm). Note that our ME uses by default NetFlow version 5 reports; 
however, it also supports exporting reports according to the NetFlow 
version 9 format.  

 
• The structure and syntax of the monitoring information received from MP: 

 
A NetFlow report format can be described as follows: [NF5_HEADER, NF5_FLOW, 
NF5_FLOW, NF5_FLOW …], knowing that the NF5_HEADER describes the set of 
flows to report, it could be represented via the following structure:  
 

  
Regarding the NF5_FLOW, it describes a given 5-tuple flow and could be 
represented via the following structure: 
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 Note that for the evaluation of our adaptive sampling technique, we only 
use the fields followed by *.  

 
• Frequency at which information are receive from the various monitors: 

  
The adaptive traffic sampling and monitoring architecture that we are 
proposing relies mainly on a passive monitoring solution. Hence, once our 
monitoring and sampling service is started, it sends back NetFlow reports 
via the CM interface as soon as one of the initially configured conditions 
is satisfied. These conditions are: the size of the buffer holding the 
NetFlow records and the expiration timers associated with the different 
types of flow records (TCP, UDP...). 

 
• Special configuration issues:  

 
Our passive monitoring engine relies on a set of text configuration files, 
which should be setup before starting the daemon.  

 
6.1.2 TR Interface 
 

• Attributes/Objects (output from the syntax translator) passed to the 
representation module: 
 
Once the NetFlow reports are received by the TCI, the later will take in 
charge the extraction of the fields followed by * and passing them to the 
Representation block. The latter will transform these statistics into 
tagged observations which will be stored later within the observation 
Information Base (OIB). The stored information could be retrieved later by 
our ML algorithm by means of the Register (RL) or loaded (on-demand) by the 
Processing block. 

 
• Structure of the messages (combination of attributes): 

 
The structure of a NetFlow report is as follows: [NF5_HEADER, NF5_FLOW, 
NF5_FLOW, NF5_FLOW …] 

 
• Message sequencing and ordering: Apply the FIFO policy for message 

ordering. 
 

• Message rate (pacing/flow control and/or rate limitation expected):NetFlow 
Reports are received in a sporadic way. 

 
• Errors need to be recuperated: All the errors are managed at the ME. None 

is reported to the MLE. 
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6.1.3 PD+DT Interfaces  
 

• Information passed to the TCI over the PD and DT interfaces: 
 
Our cognitive system will need to configure the sampling rates in our 
passive monitoring points so as to optimize the accuracy while limiting the 
overhead (volume of collected traffic, packet processing and memory access 
in routers). So at some point, the cognitive algorithm will need to change 
the sampling rate of a given ME at a given network interface. The latter 
communication will be ensured via the DP+TD interfaces to the TCI and then 
to the ME via CM interface. The generic format of the control message to be 
exchanged is as follows: 

 
[Command = “change the sampling rate”, Network Interface = a.b.c.d, New 
sampling rate = x/y (y > 0) we send the couple (x, y)] 

 
We managed to run a control server within our ME which will listen for 
incoming packets at a given control port. The same control port should be 
used by the TCI in order to forward control messages coming from the ML 
engine towards the ME via the CM interface. Once the control message is 
received by the ME, it is parsed and the sampling rate of the corresponding 
interface is changed according to the new received value. 

 
We describe next the current hard representation of the control message 
that we are using. This control message consists of the following string:  
 

P1#P2#Network_Interface 
 
 where: 

- P1, P2 and Network_Interface are also string values. 
- The new sampling rate value is equal to P1/P2 knowing that P2 > 
0. 

- And Network_Interface follows the following format: a.b.c.d which 
represents the monitoring interface for which we will change the 
sampling rate.  

 
 
6.2 Use case a3: Cooperative traffic anomalies and attacks detection 

 
For implementing the detection and classification algorithms, the following 
overall thread needs to be developed in the ECODE framework. A continuous process 
ensures that packet data is entering the monitoring engine which on its turn sends 
the required fields to the responsible module in the Machine Learning Engine.  
 
As previously, by default, IP and TCP headers are captured for each packet 
together with an accurate timestamp. But depending on privacy rules, more 
information per packet can be captured. There, the two stages anomaly detection 
and classification process builds the needed traffic models (algorithm taken as an 
example in Section 2.3.1 of D3.2 considers traffic deltoids, but any other traffic 
model can be considered for this detection process, e.g. Markovian, Gamma-Farina, 
etc.), isolates the possible anomalies and classifies them. Among the different 
kinds of anomalies that can be detected, we distinguish between legitimate (as 
flash crowd or alpha flows) and illegitimate anomalies (as attacks) regarding the 
management of the anomaly. 
 

• For illegitimate anomalies, it clearly means that the corresponding packets 
represent a useless load for the network. They then can be discarded. The 
Machine Learning corresponding module will then provide to the forwarding 
engine the characteristics of the anomaly in order to help it discard the 
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faulty packets. At this stage, we have a first list of parameters 
characterizing anomalies (as in Tables 5 and 6 for instance), but it still 
needs to be completed, as well as the alarm formats. 

 
• For legitimate anomalies which significantly impact network performance, a 

new way of managing the routing or the forwarding has certainly to be set-
up. Therefore, the machine learning module concerned with anomaly detection 
provides to the routing and forwarding engines the characteristics of the 
anomaly issued from the detection and classification process, in order them 
to apply the appropriate counter-measures. 
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7. Conclusion 
 
This deliverable outlines the methods proposed for use cases a1 and a3 and details 
the validation results that were obtained through extensive simulations and 
network emulation campaigns. Through the use case a1, we presented a network-wide 
monitoring system that adopts an adaptive centralized approach to coordinate 
responsibilities across monitors by adjusting their sampling rates. Our system 
extends the existing NetFlow-like monitoring tools with a cognitive engine that 
correlates collected measurements from all routers to infer a better global view 
of the network traffic. Moreover, it automatically reconfigures the sampling rates 
in the different monitors according to the monitoring application requirements and 
resource consumption constraints. By using our system, the network operator just 
has to select a measurement task and a monitoring resource constraint (TO: 
Threshold of Overhead). Our self configuring system will then iterate measurements 
and adjust sampling rates in small steps in order to address the tradeoff between 
monitoring accuracy and overhead. 
 
We validated the performance of our system over a real platform we developed for 
the purpose of the study. Our platform replays TcpDump traffic traces and deploys 
real flow monitoring tools. For the case of estimating the full traffic matrix, 
experimental results proved the ability of our system to continuously improve the 
monitoring accuracy while limiting the overhead to its target value. Moreover, the 
system provides a fair allocation of sampling rates over monitors so that 
measurement errors are homogenously distributed among flows independently of their 
volumes. Compared to static edge configuration, our network-wide adaptive system 
has shown its advantages in better capturing network flows especially for small 
flows.  
 
Our future research will focus on the validation of our approach with more 
applications. The counting of flows, the tracking of some user-specific flows, the 
detection of anomalies, and the identification of greedy users are among the 
applications we want to cover. The distribution of the control and adaptive 
overhead tuning are other interesting objectives to realize. 
 
As regards the Unsupervised Anomaly Detection algorithm that we have proposed 
within use case a3, this deliverable presents many interesting advantages w.r.t. 
previous proposals in the field of anomaly Detection. 
 
Through the use of NewNADA, the algorithm can use different levels of traffic 
aggregation to construct traffic patterns in Y, improving detection results, 
particularly as regards detection sensitivity to low intensity anomalies. For 
example, in [Fernandes 2009] we have used aggregation at the victim’s network 
level, using destination IP address and various network masks (e.g., /0, /8, /16, 
and /24) to aggregate traffic packets. This flexibility provided by NewNADA 
increases the performance of the unsupervised detection. 
 
The unsupervised learning module uses exclusively unlabelled data to detect 
traffic anomalies, without assuming any particular model or any canonical data 
distribution. This allows detecting new previously unseen network attacks. Despite 
using ordinary clustering techniques to identify traffic anomalies, the algorithm 
avoids the lack of robustness of general clustering approaches, by combining the 
notions of sub-space clustering and multiple evidence accumulation.  
 
Using sub-space clustering, we are able to perform clustering in low-dimensional 
feature spaces, avoiding the “curse of dimensionality” problem. Low-dimensionality 
clustering can be efficiently performed by density-based clustering algorithms, 
which are well known to be very powerful to discover clusters of arbitrary shapes 
[Jain10]. 
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The sub-space clustering approach also permits to obtain easy-to-interpret and 
tractable results, providing insight and explanations about the detected anomalies 
to a human network manager. Additionally, clustering in low-dimensional feature 
spaces provides results that can be visualized by standard techniques, which 
improves the assimilation of results. 
 
We have verified the effectiveness of this unsupervised detection approach to 
detect and isolate real distributed network attacks in a completely blind fashion, 
without assuming any particular traffic model, detection threshold, significant 
clustering parameters, or even clusters structure beyond a basic definition of 
what an anomaly is. Additionally, we have tested the performance of the algorithm 
both in a prototype Matlab implementation as well as in a real network topology 
represented by iLAB, obtaining the same detection accuracy in both cases. However, 
the method still requires validation as regards the detection of a larger variety 
of network attacks, and the native-code implementation should be optimized in 
order to apply the algorithms for on-line unsupervised anomaly detection. A 
comprehensive evaluation of the algorithm is part of our current on-going work.  
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